Investigation on Annealed CNTs to the Electrical and Optical Properties of Nanocomposited MEH-PPV: CNTs Thin Film


Article Preview

Our research focused on the organic semiconductor layer of MEH-PPV blend CNTs to investigate the electrical and optical properties with different composition ratio of CNTs. The composition ratios are from 0, 1, 2, 3 and 4 wt%. The solvent used for dissolving the MEH-PPV is toluene which is an aromatic solvent. The CNTs are annealed before mixing it to the MEH-PPV solution at 450 οC for 30 minutes. This is to ensure that all of the impurities in the CNTs are totally removed. After blending the CNTs with the MEH-PPV, the nanocomposite is then deposited on a glass substrate by spin coating technique. The optical properties of the thin film were characterized by using UV-VIS spectrometer to analyze the absorbance and transmittance of the thin film. The electrical properties characterization is done using two point probes to measure the current in dark and under illumination condition. The highest value of conductivity is at 4 wt% concentration of CNTs with 0.02738 Sm-1. It can also be observed that the thicknesses of the thin films decreased from 0 wt% to 4 wt%. The highest value of absorbance is at 0 wt% with the value of 0.35. The absorbance peak tends to shift to a shorter wavelength with respect to the main absorbance (0 wt %) as reference sample. Transmittance of the thin film showed improvement from 40 to 70 T%.



Main Theme:

Edited by:

Zainal Arifin Ahmad, M.A. Yarmo, Fauziah Abdul Aziz, Dr. Meor Yusoff Meor Sulaiman, Badrol Ahmad, Khairul Nizar Ismail, Abdul Rashid Jamaludin, Muhammad Azwadi Sulaiman and Mohd Fariz Ab Rahman




P. S. Mohamad Saad et al., "Investigation on Annealed CNTs to the Electrical and Optical Properties of Nanocomposited MEH-PPV: CNTs Thin Film", Advanced Materials Research, Vol. 364, pp. 144-148, 2012

Online since:

October 2011




[1] J. M. Bell, R. G. S. Goh, E. R. Waclawik, M. Giulianini and N. Motta: Materials Forum, Vol. 32 (2008).

[2] C. Y. Kwong, A.B. Djurišić, P.C. Chui and W. K. Chan: Organic Photovoltaic V (2004), p.176.

[3] M. Endo, M. Strano, and P. Ajayan: (2008), p.13.

[4] Z. Spitalsky, D. Tasis, K. Papagelis and C. Galiotis: In Press, Corrected Proof, (2010).

[5] M. S. Alsalhi, Z. S. Abu Mustafa and V. Masilamani: Optics & Laser Technology Vol. 43 (2011), p.147.

[6] P. M. Sirimanne and E. V. A. Premalal: Journal of Physics Vol. 8 (2007) p.29.

[7] A. R. Inigo, H. C. Chiu, W. Fann, Y. S. Huang, U. Jeng, C. Hsu, K. Y. Peng, and S. A. Chen: Synthetic Metals Vol. 139, (2003) p.581.

[8] M. Sarah, M. Musa, A. Suriani, N. Jumali, Z. Shaameri, A. Hamzah, and M. Rusop: (2010), p.241.

[9] M. Bansal, R. Srivastava, C. Lal, M. N. Kamalasanan, and L. S. Tanwar: Journal of Experimental Nanoscience Vol. 5 (2010), p.412.

[10] E. A. Katz, D. Faiman, S. M. Tuladhar, J. M. Kroon, M. M. Wienk, T. Fromherz, F. Padinger, C. J. Brabec, and N. S. Sariciftci: Journal of Applied Physics Vol. 90 (2001).


[11] I. Khatri and T. Soga: Carbon and Oxide Nanostructures (2011), p.101.

[12] E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga: Journal of Applied Physics Vol. 93 (2003), p.1764.

[13] J. E. Fischer and A. T. Johnson: Current Opinion in Solid State and Materials Science Vol. 4 (1999), p.28.

[14] M. Beaudoin, M. Meunier, and C. J. Arsenault: Vol. 47 (1993), p.2197.

[15] S. Peng, J. O'Keeffe, C. Wei, and K. Cho: 3rd International Workshop on Structural Health Monitoring (2001).

[16] J. Liu, Y. Shi, and Y. Yang: Advanced Functional Material Vol. 11 (2001).

[17] V. Sivaji Reddy, K. Das, S. K. Ray, and A. Dhar: ASID'06 New Delhi (2006).

[18] K. W. Lee, K. H. Mo, J. W. Jang, N. K. Kim, W. Lee, I. M. Kim, and C. E. Lee: Current Applied Physics Vol. 9 (2009), p.1315.

[19] P.S.M. Saad, F.S. Zahid, A.S. Hamzah, and M. R. Mahmood: E-SciNano, Kuala Lumpur Convention Centre (2010).

Fetching data from Crossref.
This may take some time to load.