Synthesis and Characterization of MWCNT/CaCO3 Hybrid Compound

Abstract:

Article Preview

In this work, the chemical vapor deposition (CVD) technique was used to synthesis the multiwall carbon nanotubes/calcium carbonate (MWCNT/CaCO3) hybrid compound. A gas mixture of CH4/N2 was used as the source of carbon and Ni/CaCO3 was used as catalyst for the growth of the hybrid compound. The catalyst was prepared using a mixture of nickel salt and CaCO3 via co-precipitation method. In short, the process involves the drying of the precipitate followed by calcinations at 900°C. Reduction process was carried under H2 at 400°C and growth in CH4/N2 mixture at 800°C for 30 minutes .The resulted compound was then analyzed using XRD, SEM and HRTEM. From XRD analysis the CNT/ CaCO3 was successfully synthesized. HRTEM micrographs support the formation of MWCNT on the CaCO3 surface.

Info:

Periodical:

Main Theme:

Edited by:

Zainal Arifin Ahmad, M.A. Yarmo, Fauziah Abdul Aziz, Dr. Meor Yusoff Meor Sulaiman, Badrol Ahmad, Khairul Nizar Ismail, Abdul Rashid Jamaludin, Muhammad Azwadi Sulaiman and Mohd Fariz Ab Rahman

Pages:

460-464

Citation:

S. S. Mohd Saleh et al., "Synthesis and Characterization of MWCNT/CaCO3 Hybrid Compound", Advanced Materials Research, Vol. 364, pp. 460-464, 2012

Online since:

October 2011

Export:

Price:

$38.00

[1] D. Eder: Chem. Rev. Vol. 110 (2010), pp.1348-1385.

[2] S. Takenaka, H. Ogihara, I. Yamanaka, and K. Otsuka: Appl. Catal. A: General Vol. 217 (2001), p.101–110.

[3] R. L. Vander Wal, T. M. Ticich, and V. E. Curtis: J. Phys. Chem. A Vol. 104 (2000), p.7209.

[4] Q. Li, H. Yan, J. Zhang and Z. Liu: Carbon Vol. 42 (2004), pp.829-835.

[5] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chappelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Nature Vol. 388 (1997), p.756.

DOI: https://doi.org/10.1038/41972

[6] G. Ortega-Cervantez, G. Rueda-Morales, and J. Ortiz-Lopez: Microelectron. J. Vol. 36 (2005), pp.495-498.

[7] Z. Li, E. Dervishi, Y. Xu, V. Saini, M. Mahmood, O. D. Oshin and A. S. Biris: Catal. Lett. Vol. 131 (2009), pp.356-363.

[8] C-Te. Haieh, Y-Tien. Lin, J-Y Lin, and J-Long. Wei: Mater. Chem. Phys. Vol. 114 (2009), pp.702-708.

[9] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. J. Dai: Nature Vol. 395 (1998), pp.878-88.

[10] F. Danafar, A. Fakhru'l-Razi, M. A. M. Salleha and D. R. A. Biak: Chem. Eng. J. Vol. 155 (2009), pp.37-48.

[11] A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai: J. Phys. Chem. B Vol. 103(1999), pp.6484-6492.

[12] M. H. A. Kudus, H. M. Akil, H. Mohamad and L. E. Loon: J. Alloys Compd. Vol. 509 (2011), pp.2784-2788.

[13] J. Kong, A. M. Cassell and H. J. Dai: Chem. Phys. Lett. V0l. 292 (1998), pp.567-574.

[14] M.T. Tavares, I. Alstrup, C.A. Bernardo, and J.R. Rostrup-Nielsen: J. Catal. Vol. 147 (1994), p.525.

[15] V.B. Ferelonov, A. Yu. Derevyankin, L.G. Okkel, L.B. Avdeeva, V.I. Zaikovskii, E.M. Moroz, A.N. Salanov, N.A. Rudia, V.A. Likholobov, and Sh.K. Shaikhutdinov: Carbon Vol. 35 (1997), p.1129.

DOI: https://doi.org/10.1016/s0008-6223(97)00084-5

[16] Y. Zhao, H. Nakano, H. Murakami, T. Sugai, H. Shinohara and Y. Saito: Appl. Phys. A Vol. 85(2006), p.103–107.

Fetching data from Crossref.
This may take some time to load.