Synthesis and Characterization of MWCNT/CaCO3 Hybrid Compound


Article Preview

In this work, the chemical vapor deposition (CVD) technique was used to synthesis the multiwall carbon nanotubes/calcium carbonate (MWCNT/CaCO3) hybrid compound. A gas mixture of CH4/N2 was used as the source of carbon and Ni/CaCO3 was used as catalyst for the growth of the hybrid compound. The catalyst was prepared using a mixture of nickel salt and CaCO3 via co-precipitation method. In short, the process involves the drying of the precipitate followed by calcinations at 900°C. Reduction process was carried under H2 at 400°C and growth in CH4/N2 mixture at 800°C for 30 minutes .The resulted compound was then analyzed using XRD, SEM and HRTEM. From XRD analysis the CNT/ CaCO3 was successfully synthesized. HRTEM micrographs support the formation of MWCNT on the CaCO3 surface.



Main Theme:

Edited by:

Zainal Arifin Ahmad, M.A. Yarmo, Fauziah Abdul Aziz, Dr. Meor Yusoff Meor Sulaiman, Badrol Ahmad, Khairul Nizar Ismail, Abdul Rashid Jamaludin, Muhammad Azwadi Sulaiman and Mohd Fariz Ab Rahman




S. S. Mohd Saleh et al., "Synthesis and Characterization of MWCNT/CaCO3 Hybrid Compound", Advanced Materials Research, Vol. 364, pp. 460-464, 2012

Online since:

October 2011




[1] D. Eder: Chem. Rev. Vol. 110 (2010), pp.1348-1385.

[2] S. Takenaka, H. Ogihara, I. Yamanaka, and K. Otsuka: Appl. Catal. A: General Vol. 217 (2001), p.101–110.

[3] R. L. Vander Wal, T. M. Ticich, and V. E. Curtis: J. Phys. Chem. A Vol. 104 (2000), p.7209.

[4] Q. Li, H. Yan, J. Zhang and Z. Liu: Carbon Vol. 42 (2004), pp.829-835.

[5] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chappelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Nature Vol. 388 (1997), p.756.


[6] G. Ortega-Cervantez, G. Rueda-Morales, and J. Ortiz-Lopez: Microelectron. J. Vol. 36 (2005), pp.495-498.

[7] Z. Li, E. Dervishi, Y. Xu, V. Saini, M. Mahmood, O. D. Oshin and A. S. Biris: Catal. Lett. Vol. 131 (2009), pp.356-363.

[8] C-Te. Haieh, Y-Tien. Lin, J-Y Lin, and J-Long. Wei: Mater. Chem. Phys. Vol. 114 (2009), pp.702-708.

[9] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. J. Dai: Nature Vol. 395 (1998), pp.878-88.

[10] F. Danafar, A. Fakhru'l-Razi, M. A. M. Salleha and D. R. A. Biak: Chem. Eng. J. Vol. 155 (2009), pp.37-48.

[11] A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai: J. Phys. Chem. B Vol. 103(1999), pp.6484-6492.

[12] M. H. A. Kudus, H. M. Akil, H. Mohamad and L. E. Loon: J. Alloys Compd. Vol. 509 (2011), pp.2784-2788.

[13] J. Kong, A. M. Cassell and H. J. Dai: Chem. Phys. Lett. V0l. 292 (1998), pp.567-574.

[14] M.T. Tavares, I. Alstrup, C.A. Bernardo, and J.R. Rostrup-Nielsen: J. Catal. Vol. 147 (1994), p.525.

[15] V.B. Ferelonov, A. Yu. Derevyankin, L.G. Okkel, L.B. Avdeeva, V.I. Zaikovskii, E.M. Moroz, A.N. Salanov, N.A. Rudia, V.A. Likholobov, and Sh.K. Shaikhutdinov: Carbon Vol. 35 (1997), p.1129.


[16] Y. Zhao, H. Nakano, H. Murakami, T. Sugai, H. Shinohara and Y. Saito: Appl. Phys. A Vol. 85(2006), p.103–107.

Fetching data from Crossref.
This may take some time to load.