Adaptive MMSE Multiuser Detection in MIMO OFDM Wireless Communication System


Article Preview

The combination of MIMO signal processing with OFDM is a solution to achieving high data rates for next generation wireless communication systems operating in frequency selective fading environments. To realize the extension of the MIMO with OFDM, a number of changes are required in the baseband signal processing. The developed adaptive Multiuser Detection in MIMO OFDM(AMUD) scheme performs better compared to non adaptive MIMO OFDM, at low Signal to noise ratio (SNR), it shows good performance in computational complexity, bit error rate (BER) and capacity. Simulation results show that the developed algorithm sum rate capacity is very close to MIMO theoretical upper bound (21.5 bits/s/Hz at signal to noise ratio of 20dB) which strongly indicate it’s applicability to the uplink channel where power transmission at the mobile station is a constraint. The BER performance of the developed scheme shows that, as the number of antenna increases, the 8 x 8 AMUD provides a 2dB gain compared to known non adaptive MIMO OFDMO at low SNR.



Edited by:

Prof. A.O. Akii Ibhadode




T. Eneh et al., "Adaptive MMSE Multiuser Detection in MIMO OFDM Wireless Communication System", Advanced Materials Research, Vol. 367, pp. 233-240, 2012

Online since:

October 2011




[1] L. J. Cimini, Analysis and simulation of digital mobile channel using orthogonal frequency division multiple access, , IEEE Transactions Communication, vol. 33, Iss. 7, 1985, 665–675.

DOI: 10.1109/tcom.1985.1096357

[2] A. Van Zelt et al, A. van Nee, R. G. A. Awater, Space Division Multiplexing for OFDM systems, Proc. of the IEEE VTC-Spring, vol. 2, May 2000, 1070-1074.

DOI: 10.1109/vetecs.2000.851289

[3] M. D. Batariere, J. F. Kepler, T. P. Krauss, S. Mukthavaram, J. W. Porter, and F. W. Vook , An experimental OFDM system for broadband mobile communications , IEEE Veh. Technology conference, vol. 4, Aug. 2001, 1947–(1951).

DOI: 10.1109/vtc.2001.957083

[4] Y. Li and N. R. Sollenberger, Adaptive antenna arrays for OFDM systems with co-channel interference, IEEE Trans. on Communication, vol. 47, Iss. 2, Feb. 1999, 217–229.

DOI: 10.1109/26.752127

[5] G. J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Technical Journal, vol. 1, No. 2, 1996, 41–59.

DOI: 10.1002/bltj.2015

[6] G. J. Foschini and M. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, IEEE wireless Piers. Communication, vol. 6, Iss. 3, March 1998, 311–335.

[7] G. G. Raleigh and J. M. Cioffi, Spatio-temporal coding for wireless communication, IEEE Transactions on Communications, vol. 46, No. 1, 1998, 357–366.

DOI: 10.1109/26.662641

[8] V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Transactions on Information theory, vol. 44, March 1998, 744–756.

DOI: 10.1109/18.661517

[9] E. Telatar, Capacity of Multi-antenna Gausian Channels, Technical Memorandum, Bell Laboratories, Lucent Technologies, Published in European Transactions on Telecommunications, vol. 10, Iss. 6, Nov/Dec 1999, 585–595.

DOI: 10.1002/ett.4460100604

[10] J. H. Winters, On the capacity of radio communication systems with diversity in a Raleigh fading environment, IEEE J. Select. Areas Comm., Vol. 5, Iss. 5, June 1987, 871-878.

DOI: 10.1109/jsac.1987.1146600

[11] Y. Li, J. Chuang and N. R. Sollenberger, Transmit diversity for OFDM systems and its impact on high-rate data wireless networks, IEEE Journal on Selected Areas Comm. vol. 17, Iss. 7, 1999, 1233–1243.

DOI: 10.1109/49.778182

[12] P. B. Rapajic and B. S. Vucetic, Adaptive Receiver Structures for Asynchronous CDMA Systems, IEEE Journal on Selected Areas in Communications, vol. 12, No. 4, May 1994, 685–697.

DOI: 10.1109/49.286675

[13] P. B. Rapajic and D. K. Borah, Adaptive MMSE maximum likelihood CDMA multiuser detection, IEEE Journal on Selected Areas in Communications, vol. 17, Iss. 12, Dec 1999, 2110–2122.

DOI: 10.1109/49.814823

[14] H. Sampath, T. S. Tellado, J. Erceg and V. A. Paulraj. A fourth generation MIMO-OFDM broadband wireless system: Design, performance, and field trial results, IEEE Communication Magazine, Vol. 40, Iss. 9, Feb 2002, 143–149.

DOI: 10.1109/mcom.2002.1031841

[15] G. Stuber, J. Barry, S.W. McLaughlin, Ye(Geoffrey) Li, M. Ingram and T. G. Pratt, Broadband MIMO-OFDM Wireless Communications, IEEE Trans. Comm., Vol. 92, Iss. 2, Feb. (2004).

DOI: 10.1109/jproc.2003.821912

[16] A. Van Zelt, and T. C. W Schenk, Implementation of a MIMO OFDM based wireless LAN system, IEEE Transactions on signal processing, Vol. 52, Iss. 2, p.483–494.

DOI: 10.1109/tsp.2003.820989

[17] Ye (Geoffrey). Li, Simplified channel estimation for OFDM systems with multiple transmit antennas, IEEE Transactions on Wireless Communication, vol. 1, Iss. 1, Jan 2002, 65–67.

DOI: 10.1109/7693.975446

[18] R. Van Nee, OFDM for Wireless Multimedia Communications, 1st Edition, Artech House, Inc. Norwood, MA, USA. (2000).

[19] S. A. Hana, M. El-Tanany, S. A. Mahmoud, Adaptive Combiner for Co-Channel Interference Reduction in Multi-User Indoor Radio Systems, 41st IEEE Vehicular Technology Conference, p.222–227, May (1991).

DOI: 10.1109/vetec.1991.140482

[20] A. Wittneben, A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation, IEEE Int. on Communications, May 1993, 1630–1634, Geneva.

DOI: 10.1109/icc.1993.397560

[21] S. Haykin, Adaptive Filter Theory, Englewood Cliffs, New Jersey: Prentice Hall (1986).

Fetching data from Crossref.
This may take some time to load.