Formation of Segmented Chips in Semi-Finish Turning of α-Titanium Alloy BT5


Article Preview

Machining is gradually giving way to alternative manufacturing methods for titanium components. Although powder metallurgy based methods are more complicated and expensive, they are gaining more ground because of the difficulty of machining titanium due to its low thermal conductivity. Moreover documented information on research works on titanium remains so limited in comparison with steel and aluminium. This paper highlights the importance of titanium based alloys, its properties and areas of application as well as its major classifications. A typical case of semi-finish turning of α-titanium BT5 alloy is also presented. Results of chip root examination based on the application of a quick-stop mechanism with about 11m/s withdrawal speed to freeze the cutting operation is also presented, thereby highlighting some main features that are peculiar to the chip formation in titanium as compared with other materials.



Edited by:

Prof. A.O. Akii Ibhadode






O. O. Awopetu et al., "Formation of Segmented Chips in Semi-Finish Turning of α-Titanium Alloy BT5", Advanced Materials Research, Vol. 367, pp. 265-272, 2012

Online since:

October 2011




[1] Hughes J. I., Sharman A. R. C. and Ridgway K. The Effect of cutting Tool Material and Edge Geometry on Tool Life and Workpiece Surface Integrity. Proceedings of the Institution of Mechanical Engineers (IMechE), Part B: Engineering Manufacture Vol. 220, No 2, (2006).

DOI: 10.1243/095440506x78192

[2] Childs T. H. C., Maekawa K., Obikawa T. and Yamane Y. Metal Machining. Elsevier Ltd, Oxford, (2004). pp.376-379.

[3] Grzesilk W. Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications. Metal Machining. Elsevier Ltd, Oxford, (2008). pp.192-193.

[4] Trent E. M. and Wright P. K. Metal Cutting. Fourth Edition, Butterworth-Heinemann, Boston, USA, (2000). pp.303-306.

[5] Awopetu O. O., Talantov N. V., Kurchenko, A. I. and Utkin, E. F. Cutting Forces during Turning of α-Titanium Alloy BT5. Russian Academy of Science. Institute of Scientific and Technical Information. Moscow. Vol. 232 No. 8 (1995). pp.25-27.

[6] Ezugwu E. O., Bonney J. and Yamane Y. An Overview of the Machinability of Aeroengine Alloys. Journal of Materials Processing Technology, Vol 134 (2003). pp.233-253.

DOI: 10.1016/s0924-0136(02)01042-7

[7] Dahunsi O. A. and Awopetu O. O. The Use of an Indirect Impact Quick-Stop Mechanism during the Turning of α-titanium BT5 Alloy. International Journal of Machining and Machinability of Materials, Vol 3, No 1&2, (2008). p.80 – 90.

DOI: 10.1504/ijmmm.2008.017626

[8] Ezugwu E. O. and Wang Z. M. Titanium Alloys and their Machinability-A Review. Journal of Materials Processing Technology. Vol 68, No. 3, (1997). pp.262-274.

[9] Rahman M., Wong Y. S. and Zareena A. R. Machinability of Titanium Alloys. Inernational Journal of Japanese Society of Mechanical Engineers (JSME). Series C, Vol 46, No. 1, (2003). p.107 – 115.

[10] Oostuizen G. A., Akdogan G., Dimitrov D. and Treurnicht N. F., A Review of the Machinability of Titanium Alloys. Research and Development Journal of the South African Institution of Mechanical Engineering (SAIMechE), Vol. 26 (2010), pp.43-52.

[11] Komanduri R. (1982). Some Clarifications on the Mechanics of Chip Formation when Machining Titanium Alloys. Wear. Vol. 76, No 1, p.15 – 34.

DOI: 10.1016/0043-1648(82)90113-2

[12] Sun S., Brandt M. and Dargusch M. S. Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys. International Journal of Machine Tools and Manufacture, Vol. 49 No. 7&8, (2009). pp.561-568.

DOI: 10.1016/j.ijmachtools.2009.02.008

[13] Zhang S., Li J. F., Deng J. X. and Li Y. S. Investigation on Diffusion Wear during High-Speed Machining Ti-6Al-4V Alloy with Straight Tungsten Carbide Tools. International Journal of Advanced Manufacturing Technology Vol. 44. No. 1&2, (2009).

DOI: 10.1007/s00170-008-1803-z

[14] Ezugwu E. O., Olajire K. A. and Wang Z. M. Wear Evaluation of a Self-Propelled Rotary Tool when Machining Titanium Alloy IMI 318. Proceedings of the Institution of Mechanical Engineers (IMechE), Part B: Engineering Manufacture Vol. 216, No. 6, (2002).

DOI: 10.1243/095440502320193012

[15] Abdel-Aal H. A., Nouari M. and El Mansori M. Influence of Thermal Conductivity on Wear when Machining Titanium Alloys. Tribology International. Vol 42, (2009). pp.359-372.

DOI: 10.1016/j.triboint.2008.07.005

[16] Awopetu O. O. and Ayodeji S. P. Effect of Type of Workpiece Material on Chip Formation Process. Assumption University Journal of Technology, Vol. 11 No. 3 (2008). p.181 – 186.

[17] Gente A. and Hoffmeister H. W. Chip Formation in Machining Ti6Al4V at Extremely high cutting Speeds. CIRP Annals – Manufacturing Technology. Vol 50, No. 1, (2001) pp.49-52.

DOI: 10.1016/s0007-8506(07)62068-x

[18] Alexander J. M., Brewer R. C. and Rowe G. W. Manufacturing Technology, Volume 1: Engineering Materials, Ellis Horwood Ltd., West Sussex, England (1987). p.495.

[19] Baker, M. An Investigation of the Chip Segmentation Process Using Finite Elements, TechnischeMechanik, Band 23, Heft 1, (2003)p.1–9, Retrieved on 8August 2010, Available at: http: /www. uni- magdeburg. de/ifme/techmech/pdf/baeker. pdf.

[20] Shivpuri, R., Hua, J., Mittal, P. and Srivastava, A. KMicrostructure-Mechanics Interactionsin Modelling Chip Segmentation During Titanium Machining, CIRP Annals – Manufacturing Technology. Vol. 51, No 1, . (2002)pp.71-74.

DOI: 10.1016/s0007-8506(07)61468-1

[21] Nabhani F. Wear Mechanisms of Ultra-hard Cutting Tools Materials. Journal of Materials Processing Technology, Vol 115, No 3, (2001). p.402 – 412.

DOI: 10.1016/s0924-0136(01)00851-2

[22] Soo S. L. and Aspinwall D. K. Developments in Modelling of Metal Cutting Processes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications Vol 221, No 4, (2007). pp.197-211.

[23] Poulachon G., Moisan A and Jawair I. S. On Modelling the Influence of Thermo-Mechanical Behavior in Chip Formation During Hard Turning of 100Cr6 Bearing Steel. CIRP Annals – Manufacturing Technology. Vol 50, No. 1, (2001). pp.31-36.

DOI: 10.1016/s0007-8506(07)62064-2

[24] Komanduri R. and Hou Z. B. On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V). Metallurgical and Materials Transactions A, Vol. 33A, No 9, (2002). p.2995 – 3010.

DOI: 10.1007/s11661-002-0284-1

[25] Molinari A., Musquar C. and Sutter G. Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modelling. International Journal of Plasticity, Vol 18, No. 4, (2002). p.443 – 459.

DOI: 10.1016/s0749-6419(01)00003-1

[26] Hou Z. B. and Komanduri R. Modelling of Thermomechanical Shear Instability in Machining. International Journal of Mechanical Science. Vol. 39, No. 11, (1997). pp.1273-1314.

DOI: 10.1016/s0020-7403(97)00017-9

[27] Chechilin, B.B. and Hesin, U.D. Cyclical andCorrosion Strength of Titanium Alloys, Metallurgia, Moscow, (1987) p.75–80.

[28] Poduraev V. N. Cutting of Materials with Low Machinability Properties. Vishaya Shkola Publishers, Moscow, (1974). pp.125-130.

[29] Awopetu O. O., Dahunsi O. A. and Aderoba A. A. Selection of Cutting Tool for Turning α-Titanium Alloy BT5. Assumption University Journal of Technology, Vol 9, No 1, (2005). pp.46-52.

[30] Talantov N. V., Utkin E. F., Dudkin M. E., Tsiganova N. M. and Korobov A. A. Submitted 16 March 1987, published 30 March 1990, Bulletin No 12, (1990). p.2, author's certification number 1553254 of USSR.

In order to see related information, you need to Login.