Research on Dynamic Performance of Concrete-Filled Steel Tubular Trussed Arch Bridge under Earthquake

Abstract:

Article Preview

Taking a double span- swallows-type CFST (concrete-filled steel tubular) trussed arch bridge as an engineering example; a spatial finite element analysis model is established to calculate its dynamic characteristic. The seismic responses in different earthquake input directions are calculated based on the elastic dynamic time history method. Results show that: the out-plane stability of the bridge is weaker than that of the in-plane; the torsion resistance ability of the bridge deck is smaller than that of the arch ribs; the axial force-Fx, shear force-Fz and bending moment-My of the bridge are mainly controlled by longitudinal seismic forces, whereas the shear forces-Fy, bending moment-Mz and torque-Mx are mainly controlled by transverse seismic forces; vertical seismic force has a considerable effect on internal forces of the bridge, so it can not be ignored in seismic design.

Info:

Periodical:

Advanced Materials Research (Volumes 368-373)

Edited by:

Qing Yang, Li Hua Zhu, Jing Jing He, Zeng Feng Yan and Rui Ren

Pages:

1222-1226

DOI:

10.4028/www.scientific.net/AMR.368-373.1222

Citation:

X. L. Yan et al., "Research on Dynamic Performance of Concrete-Filled Steel Tubular Trussed Arch Bridge under Earthquake", Advanced Materials Research, Vols. 368-373, pp. 1222-1226, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.