Corrosion Rate Evolution in Concrete Structures with Hydrophobic Agents Exposed to the Marine Environment

Abstract:

Article Preview

In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement. Today, concrete with high resistance with respect to chloride penetration can be produced by internal hydrophobic treatment. The aim of this study was to fill this gap in regards to reinforced concrete structures inserted in a marine environment. Results indicated the efficacy of the hydrophobic agents in cases where capillary suction is the mechanism of water penetration. However, when the transport mechanism is permeability this product is not advisable. Moreover, it was demonstrated that the chloride diffusion coefficient is reduced by the hydrophobic agents, and the corrosion rate of reinforcement could be well protected in the treated concrete with hydrophobic agents of silane. The durability of reinforced structures can be considerably increased and can be accurately designed by the application of an appropriate and optimized protective layer.

Info:

Periodical:

Advanced Materials Research (Volumes 374-377)

Edited by:

Hui Li, Yan Feng Liu, Ming Guo, Rui Zhang and Jing Du

Pages:

1320-1324

DOI:

10.4028/www.scientific.net/AMR.374-377.1320

Citation:

W. Q. Cao et al., "Corrosion Rate Evolution in Concrete Structures with Hydrophobic Agents Exposed to the Marine Environment", Advanced Materials Research, Vols. 374-377, pp. 1320-1324, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.