Effect of TiO2 on Optical Properties of PMMA: An Optical Characterization

Abstract:

Article Preview

The transmittance, absorbance, and reflectance of PMMA/TiO2 composites, in different weight percentage of TiO2, prepared by a solution cast technique are investigated. The Optical transmission and UV-VIS absorption spectra have been recorded in the wavelength range 200nm-800nm for different compositions of TiO2 doped PMMA polyfilms. The absorption coefficient, optical (Direct/Indirect) energy gap, Refractive index, Optical Dielectric constant, Constant B, ratio of carrier concentration to the effective mass have been evaluated. The effects of doping percentage of TiO2 on these parameters have been discussed and behaviors of all parameters are investigated.

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Edited by:

Wu Fan

Pages:

3249-3256

DOI:

10.4028/www.scientific.net/AMR.383-390.3249

Citation:

G. Patel et al., "Effect of TiO2 on Optical Properties of PMMA: An Optical Characterization", Advanced Materials Research, Vols. 383-390, pp. 3249-3256, 2012

Online since:

November 2011

Export:

Price:

$38.00

[1] Acosta JL, Morales E (1996) Solid State Ion 85: 85.

[2] Kim JY, Kim SH (1999) Solid State Ion 124(1–2): 91.

[3] C.A. Linkous, Environ. Sci. Technol. 34 (2000) 44754.

[4] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C1 (2000) 1.

[5] P. Loebl, M. Huppertz, D. Mergel, Thin Solid Films 251 (1994) 72.

[6] I. Hayakawa, Y. Iwamoto, K. Kikuta, Sens. Actuators B 62 (2000) 55.

[7] A. Hagfeld, B. Didriksson, Sol. Energy Mater. Sci. Cells 31 (1994) 481.

[8] S.A. Carter, J.C. Scott, P.J. Brock, Appl. Phys. Lett. 31 (1997) 1145.

[9] J. Zhang, X. Ju, B. Wang, Q. Li, T. Liu, T. Hu, Synth. Metals 118 (2001) 181.

[10] Abd E l, Kader F H, Osman W H, Ragab H S, Sheap A M, Rizk M S &Basha M A F, J polym Matter, 21 (2004) 49.

[11] Ma H L, Zhang X H & Lucas J, j Non-cryst solids, 101 (1993) 128.

[12] J. Tauc, R. Grigorovici, A. Vanku, Phys. Stat. Sol. 15, 627 (1966).

[13] J. Tauc, in Amorphous and Liquid Semiconductors (Springer, Heidelborg, 1974).

[14] J.M. Ziman, in Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979).

[15] H.M. Zidan, M. Abu-Elnader, Physica B. 355, 308 (2005).

[16] V. Švorčık, I. Miček, V. Rybka, V. Hnatowicz, J. Mater. Res. 12, 1661 (1997).

[17] R. Mishra, S.P. Tripathy, D. Sinha, K.K. Dwivedi, S. Ghosh, D.T. Khathing, M. Muller, D. Fink, W.H. Chung, Nucl. Instrum. Meth. B. 168, 59 (2000).

[18] A. Qureshi, Dolly Singh, N.L. Singh, S. Ataoglu, Arif N. Gulluoglu, Ambuj Tripathi, D.K. Avasthi Nuclear Instruments and Methods in Physics Research B 267 (2009) 3456–34.

DOI: 10.1016/j.nimb.2009.07.016

[19] Davis DS, Shalliday JS (1960) Phys Rev 118: 1020.

[20] Thutupalli GM, Tomlin SG (1976) J Phys D Appl Phys 9: 1639.

[21] B. M. KrasovitskiÏ and B. M. Bolotin, Organic Luminescent Materials, 2nd ed. (Khimiya, Moscow, 1984; VCH, Weinheim, 1988).

[22] L. Shahada, M. E. Kassem, H. I. Abdelkader, andH. M. Hassan, J. Appl. Polym. Sci. 65, 1653 (1997).

[23] M. Hammama, M.K. El-Mansyb, S.M. El-Bashirb M.G. El-Shaarawyb, Desalination 209, 244 (2007).

[24] Tembhurkar Y D & Hirde J P, Bull Mater Sci, 15(1992) 143.

[25] Shokr E Kh, Indian J Pure & Appl Phys, 30 (1992) 271.

[26] S H Deshmukh, D K Burghate, S N Shilaskar, G N Chaudhari & P T Deshmukh, Ind J pure & appl phy 46, 344-348 (2008).

In order to see related information, you need to Login.