A Thermodynamic Model for Nearest-Neighbor Distributions in Annealed Quaternary Alloys

Abstract:

Article Preview

We focus on the annealing-induced changes of N-centered nearest-neighbor (NN) entironment in Ga1-xlnxNyAs1-y quaternary alloys and present a statistical distributing model of the binary bonds under thermodynamics equilibrium state. The core of this model is the assumption that the phase separation result of equimolar system at T=0 K is “ + ”, in which the effect of strain has been ignored. We propose two mechanisms for annealing: (i) Atomic relaxation lead to a total energy minimum. (ii) The type conversion of bond configuration is the main reason for the remarkable blue shift. Then parameter r, the number of NN In atoms per N atom, is calculated. We find that the theoretical NN distributions strain is in good agreement with former studies. It can be concluded that the blue shift induced by long-time annealing at low temperature is able to be equal with that induced by short-time annealing at higher temperature. The results are close to recent investigations. But an allegorical linear relation between band gap and composition (x, y) is still in question.

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Edited by:

Wu Fan

Pages:

768-773

DOI:

10.4028/www.scientific.net/AMR.383-390.768

Citation:

L. L. Tang and C. B. Wang, "A Thermodynamic Model for Nearest-Neighbor Distributions in Annealed Quaternary Alloys", Advanced Materials Research, Vols. 383-390, pp. 768-773, 2012

Online since:

November 2011

Export:

Price:

$35.00

[1] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, Jpn. J. Appl. Phys., 35, 1273 (1996).

[2] H. P. Xin, K. L. Kavanagh, M. Kondow, and C. W. Tu, J. Crystal Growth , 202, 419 (1999).

[3] P. J. Klar, H. Grüning, J. Koch, S. Schäfer, K. Volz, W. Stolz, W. Heimbrodt, A. M. Kamal Saadi, A. Lindsay, and E. P. O'Reilly, Phys. Rev. B 64, 121203 (2001).

DOI: 10.1103/physrevb.64.121203

[4] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).

[5] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson,R. King, D. Joslin, and N. Karam, Appl. Phys. Lett. 78, 748 (2001).

DOI: 10.1063/1.1345819

[6] K. Kim and A. Zunger, Phys. Rev. Lett. 86, 2609 (2001).

[7] W. A. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1989), p.176.

[8] V. Lordi, V. Gambin, S. Friedrich, T. Funk, T. Takizawa, K. Uno, and J. S. Harris, Phys. Rev. Lett. 90, 145505 (2003).

[9] J. -Y. Duboz, J. A. Gupta, Z. R. Wasilewski, J. Ramsey, R. L. Williams, G. C. Aers, B. J. Riel, and G. I. Sproule, Phys. Rev. B 66, 085313 (2001).

[10] V. Lordi,H. B. Yuen, S. R. Bank, M. A. Wistey, and J.S. Harris, Phys. Rev. B 71, 125309 (2005).

[11] R. Kudrawieca, G. Seka, J. Misiewicza, L.H. Lib, and J.C. Harmandb, Solid State Commun, 129, 353 (2004).

[12] M. Kondow, T. Kitatani, and S. Shirakata, J. Phys.: Condens. Matter, 16, 3229 (2004).

[13] W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. Ager III, and E, E, Haller, J. Phys.: Condens. Matter, 16, 3355 (2004).

[14] C. Skierbiszewski, Semicond. Sci. Technol, 17, 803 (2002).

[15] M. Hetterich, A. Grau, A.Y. Egorov, and H Riechert, J. Phys.: Condens. Matter, 16, 3151 (2004).

[16] V. Liverini, A. Rutz, and U. Keller, J. Appl. Phys. 99, 113103 (2006).

[17] H. Zhao, Y. Q. Xu, H. Q. Ni, S. Y. Zhang, Q. Han, Y. Du, X. H. Yang, R. H. Wu, and Z. C. Niu Semicond. Sci. Technol, 21, 279(2006).

[18] E. M. Pavelescu, J. Wagner, H. -P. Komsa, T. T. Rantala, M. Dumitrescu, and M. Pessa, J. Appl. Phys. 98, 083524 (2005).

[19] H. P. Xin and C. W. Tu, Appl. Phys. Lett. 75, 10 (2006).

[20] D. Alexandropoulos, and M. J. Adams, IEE Proc. -Optoelectron. 150, 2 (2003).

[21] Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, and D. S. Jiang, Appl. Phys. Lett. 77, 9 (2000).

In order to see related information, you need to Login.