Europium Doped Titania Nanocomposites with Enhanced Photocatalytic Activity towards the Degradation of Partially Hydrolysis Polyacrylamide


Article Preview

Nanocrystals with different Eu3+ doping levels (%) were prepared by sol-gel and hydrothermal synthetic method using titanium tetraisopropoxide (TTIP) as titanium source. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The crystallite sizes, crystal form, surface shape, composition and optical property of catalysts were characterized by X-ray diffraction patterns, UV-Vis diffuse reflectance spectroscopy, XPS and inductively coupled plasma atomic emission spectroscopy. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu3+ composites, and the reasons were explained.



Advanced Materials Research (Volumes 391-392)

Edited by:

H.M. Zhang and B. Wu




J. H. Li et al., "Europium Doped Titania Nanocomposites with Enhanced Photocatalytic Activity towards the Degradation of Partially Hydrolysis Polyacrylamide", Advanced Materials Research, Vols. 391-392, pp. 219-224, 2012

Online since:

December 2011




[1] V. Vamatheva, R. Amal, D. Beydoun, et al: Chem. Engineering Vol. 98 (2004), p.127.

[2] N. Sobana, M. Muruganadham, M. Swaminathan: J. Mol. Catal. A: Chem. Vol. 258 (2006), p.124.

[3] M. K. Seery, R. George, P. Floris, et al: J. Photochem. Photobiol. A: Chem. (2007).

[4] I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, et al: App. Catal. B: Envir. Vol. 42 (2003), p.187.

[5] Jiefang Zhu, Wei Zheng, Bin He, et al: J. Molecular Catal. A: Chem. Vol. 216 (2004), p.35.

[6] Y. Yang, X. Li, J. Chen, L. Wang, J. Photochem: Photobiol. A: Chem. Vol. 163 (2004), p.517.

[7] K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun: J. Catal. Vol 204 (2001), p.305.

[8] L. Jing, X. Sun, B. Xin, B. Wang, W. Cai, H. Fu: J. Solid State Chem. Vol. 177 (2004), p.3375.

[9] F. Li, X. Li, M. Hou: Appl. Catalysis B: Environ. Vol. 48 (2004), p.185.

[10] X. Yan, J. He, D.G. Evans, X. Duan, Y. Zhu: Appl. Catal. B: Environ. Vol. 55 (2005), p.243.

[11] Y. Uwamino, T. Ishizuka: J. Electron Spectroscopy Related Phenom. Vol. 34 (1984), p.67.

[12] F. Söderlind, H. Pedersen, R.M. Petoral Jr., P. Käll, K. Uvdal: J. Colloid Interface Sci. Vol. 288 (2005), p.140.

[13] L. Jin, X. Sun, W. Cai, Z. Xu, Y. Du: J. Phys. Chem. Solids Vol. 64 (2003), p.615.

[14] B. Xin, L. Jin, Z. Ren, B. Wang, H. Fu: J. Phys. Chem. B Vol. 109 (2005), p.2805.

[15] S. Rengaraj, X.Z. Li: J. Mol. Catal. A: Chem. Vol. 243 (2006), p.60.

[16] S.I. Shah, W. Li, C.P. Huang, O. Jung, C. Ni: PNAS Vol. 99 (2002), p.6482.

[17] A. Xu, Y. Gao, H. Liu: J. Catal. Vol. 207 (2002), p.151.

[18] J. Yu, H. Yu, B. Cheng, M. Zhou, X. Zhao: J. Mol. Catal. A: Chem. Vol. 253 (2006), p.112.

[19] L. Wu, J.C. Yu, X. Wang, L. Zhang, J. Yu: J. Solid State Chem. Vol. 178 (2005), p.321.