Synthesis and Luminescence Properties of Tris (8-Hydroxyquinoline) Iron Spindle-Like Structures at Room Temperature


Article Preview

Spindle-like bis (8-hydroxyquinoline) iron (FeQ3) complex has been synthesized with a facile method in a mixed solvent system at room temperature for 12 h. The molecular formula of the products is speculated by the C, H and N element analysis and thermal gravimetric analysis, and Fourier-transformation infrared spectroscopy was also utilized to measure its structure, which further confirm the molecular formula of the products. The observation of field emission scanning electron microscopy and transmission electron microscopy shows that the morphology of tris (8-hydroxyquinoline) iron complex is spindle-like structure. The photoluminescence of the products were also investigated. The results indicate that the photoluminescence emission of FeQ3 spindles shows obvious blue shift contrasted with that of 8-hydroxyquinoline.



Advanced Materials Research (Volumes 391-392)

Edited by:

H.M. Zhang and B. Wu




Q. H. Kong et al., "Synthesis and Luminescence Properties of Tris (8-Hydroxyquinoline) Iron Spindle-Like Structures at Room Temperature", Advanced Materials Research, Vols. 391-392, pp. 225-229, 2012

Online since:

December 2011




[1] S.F. Wuister, I. Swart, F. van Driel, S.G. Hickey and C.D.M. Donega: Nano Lett. Vol. 3 (2003), p.503.

[2] W.S. Han, Y. Kang, S.J. Lee, H. Lee, Y. Do, Y.A. Lee and J.H. Jung: J. Phys. Chem. B Vol. 109 (2005), p.20661.

[3] H. Harma, T. Soukka and T. Lovgren: Clin. Chem. Vol. 47 (2001), p.561.

[4] L.Y. Wang and Y.D. Li: Chem. Commun. Vol. 24 (2006), p.2557.

[5] G. Farruggia, S. Iotti, L. Prodi, M. Montalti, N. Zaccheroni, P.B. Savage, V. Trapani, P. Sale and F.I. Wolf: J. Am. Chem. Soc. Vol. 128 (2006), p.344.


[6] Y. Ma, J. Zhang, G. Zhang and H. He: J. Am. Chem. Soc. Vol. 126 (2004), p.7097.

[7] H.B. Fu, J.N. Yao: J. Am. Chem. Soc. Vol. 123 (2001), p.1434.

[8] B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park: J. Am. Chem. Soc. Vol. 124 (2002), p.14410.

[9] F. Debuigne, L. Jeunieau, M. Wiame and J. B. Nagy: Langmuir Vol. 16 (2000), p.7605.

[10] J. Jang and J.H. Oh: Adv. Mater. Vol. 15 (2003), p.977.

[11] Y.L. Liu, H.X. Li, D.Y. Tu, Z.Y. Ji, C.S. Wang, Q.X. Tang, M. Liu, W.P. Hu, Y.Q. Liu and D.B. Zhu: J. Am. Chem. Soc. Vol. 128 (2006), p.12917.

[12] D.B. Xiao, L. Xi, W.S. Yang, H.B. Fu, Z.G. Shuai, Y. Fang, J.N. Yao: J. Am. Chem. Soc. Vol. 125 (2003), p.6740.

[13] Z.Y. Tian, Y. Chen, W.S. Yang, J.N. Yao, L.Y. Zhu, Z.G. Shuai and Angew: Chem. Int. Ed. Vol. 43 (2004), p.4060.

[14] C.W. Tang and S.A. Vanslyke: Appl. Phys. Lett. Vol. 51 (1987), p.913.

[15] Y.S. Zhao, C.A. Di, W.S. Yang, G. Yu, Y.Q. Liu and J.N. Yao: Adv. Funct. Mater. Vol. 16 (2006), p. (1985).

[16] M. Muccini, M.A. Loi, K. Kenevey, R. Zamboni, N. Mascioccini and A. Sironi: Adv. Mater. Vol. 16 (2004), p.861.

[17] J.J. Chiu, C.C. Kei, T.P. Perng and W.S. Wang: Adv. Mater. Vol. 15 (2003), p.1361.

[18] H.C. Pan, F.P. Liang, C.J. Mao, J.J. Zhu and H.Y. Chen: J. Phys. Chem. B Vol. 111 (2007), p.5767.

[19] W. Chen, Q. Peng, Y.D. Li: Cryst Growth Design Vol. 8 (2008), p.564.

[20] B.S. Xu, Y.Y. Hao, H. Wang, H.F. Zhou, X.G. Liu and M.W. Chen: Solid State Commun. Vol. 136 (2005), p.318.

[21] G. De Armas, M. Miro, A. Cladera: J.M. Estela and V. Cerda, Anal. Chem. Acta. Vol. 455 (2002), p.149.

[22] A.V. Bordunov, J.S. Bradshaw, X.X. Zhang, N.K. Dalley, X. Kou and R.M. Izatt: Inorg. Chem. Vol. 35 (1996), p.7229.

[23] S. Wang: Coord. Chem. Rev. Vol. 215 (2001), p.79.

[24] B.D. Muegge, S. Brooks and M.M. Richter: Anal. Chem. Vol. 75 (2003), p.1102.

Fetching data from Crossref.
This may take some time to load.