The Electronic Properties of Al-, P-Doped and Al, P Co-Doped Boron Nitride Nanotubes


Article Preview

The electronic properties of Al-, P-doped, and Al, P co-doped in a (6, 6) BN nanotubes were obtained using the first principle calculation based on the density functional theory. For the doped BNNTs, the structures are with ignorable deformation observed around the doping atoms. The analysis of the formation energies shows that aluminum replacement to be favorable, particularly in the case of the low concentration, and the stability of nanotubes has nothing to do with the doping position. The electronic band structure and DOS for the systems of Al-, and P-doped BNNTs all behave as impurity-doped widegap semiconductor. And as to the P-doped BNNTs, the conductivity becomes stronger with the higher concentration. Whereas, the results of the system of Al, P co-doped BNNTs illustrate that the electronic properties of nanotubes have nothing to do with the doping positions of impurity atoms.



Advanced Materials Research (Volumes 399-401)

Edited by:

Jianmin Zeng, Yun-Hae Kim and Yanfeng Chen




M. Sun et al., "The Electronic Properties of Al-, P-Doped and Al, P Co-Doped Boron Nitride Nanotubes", Advanced Materials Research, Vols. 399-401, pp. 2215-2221, 2012

Online since:

November 2011




[1] S. Iijima, Nature 354 (1991) 56.

[2] A. Rubio, J. Corkill, M.L. Cohen, Phys. Rev. B 49 (1994) 5081.

[3] N.G. Chopra, R.J. Luyken, K. Cherrey, et al., Science 269 (1995) 966.

[4] X. Blasé, A. Rubio, S. Louie, and M. Cohen, Europhys. Lett. 28 (1994) 335.

[5] G. Guo and J. Lin, Phys. Rev. B 71 (2005) 165402-1.

[6] B. G. DEMCZYR, J. CUMINGS, ZETTLA, et al., Appl. Phys. Lett. 78 (2001) 2772.

[7] C. Tang, Y. Bando, Y. Huang, S. Yue, C. Gu, F. Xu, D. Golberg, J. Am. Chem. Soc. 127 (2005) 6552.

[8] K. H. He, G. Zheng, G. Chen, M. Wan, G. F. Ji, Phys. B 403 (2008) 4213.

[9] B. H. Yan, C. W. Park, J. Ihm, G. Zhuo, W. H. Duan, N. Park, J. Am. Chem. Soc. 130 (2008) 17012.

[10] P. N. D'yachkov, D. V. Makaev, J. Phys. Chem. Soli. 70 (2009) 180.

[11] D. R. HARTREE, PROC. CAM. PHIL, J. Soc. 24 (1928) 89.

[12] J.C. SLATER, Phys. Rev. 51 (1937) 846.

[13] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

[14] M. SEGALL, M. PROBERT, PICKARD C. P., et al., Phys. Cond. Matt. 14 (11) (2002) 2717.

Fetching data from Crossref.
This may take some time to load.