Microwave Absorbing Performance and Infrared Emissivity of Co-Doped ZnO

Abstract:

Article Preview

In this paper the powders of Zn1-xCoxO (x=0, 0.01, 0.02, 0.025, 0.05, 0.1) were fabricated by the conventional solid state reaction. The crystal structure was characterized by x-ray diffraction (XRD). The electromagnetic parameters were measured using vector network analyzer (VNA), the infrared emissivity in the wavelength range of 3-5μm and 8-14μm was measured by Dual-band infrared emissivity measuring instrument. The absorption bandwidth of the double-layer microwave absorber is obviously more than that of the single-layer absorber. The bandwidth of the double-layer microwave absorber for reflection loss R<-8dB is 2.64GHz over the range of 8.2-18GHz. The thickness of the absorbers is only 4 mm. The infrared emissivity is only 0.39 in the range of 3-5μm and 0.81 in the range of 8-14μm.

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Edited by:

Jianmin Zeng, Yun-Hae Kim and Yanfeng Chen

Pages:

880-885

DOI:

10.4028/www.scientific.net/AMR.399-401.880

Citation:

S. Y. Zhang and Q. X. Cao, "Microwave Absorbing Performance and Infrared Emissivity of Co-Doped ZnO", Advanced Materials Research, Vols. 399-401, pp. 880-885, 2012

Online since:

November 2011

Export:

Price:

$35.00

[1] S. Suwanboon, A. Amornpitoksuk, A. Haidoux, J.C. Tedenac. J. Alloys Compd. Vol. 462 (2008), p.335.

[2] Z. Ling, C. Leoch, R. Freer. J. Eur. Ceram. Soc. Vol. 21 (2001), p. (1977).

[3] S.M. Gheno, R.H.G.A. Kiminami, M.R. Morelli, P.I. Paulin Filho. J. Eur. Ceram. Soc. Vol. 30 (2010), p.549.

[4] C.Y. Hsu, T.F. Ko, Y.M. Huang. J. Eur. Ceram. Soc. Vol. 28 (2008), p.3065.

[5] R.F. Zhuo, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, P.X. Yan. J. Appl. Phys. Vol. 104(2008), pp.094101-1.

[6] Fangli Du, Ning Wang, Dongmei Zhang, Yingzhong Shen. Journal of Rare Earth. Vol. 28 (2010), p.391.

[7] Zhongyan Meng, Xi Yao: Dielectric Theoretical Foundation (National Defence Industry Press, Beijing 1980) p.218 (in Chinese).

[8] Tiangui You, Zhiyong Zhang, Junfeng Yan, Wu Zhao, Long Zhang. Journal of Northwest University: Natural Science Edition. Vol. 39 (2009), p.944 (in Chinese).

[9] Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena. Phys. Rev. B Vol. 77 (2008), pp.205411-1.

[10] Kenji Ueda, Hitoshi Tabata, and Tomoji Kawai. Appl. Phys. Lett. Vol. 79(2001), p.988.

[11] Eun-Ae Choi, Woo-Jin Lee, and K.J. Chang. J. Appl. Phys. Vol. 108 (2010), p.023904: 1-6.

[12] Shubra Singh, N. Rama, K. Sethupathi, and M.S. Ramachandra Rao, J. Appl. Phys Vol. 103 (2008), p. 07D108-1.

[13] K. Tominaga, T. Takao, A. Fukushima, T. Moriga and I. Nakabayashi. Vacuum. Vol. 66(2002), p.511.

[14] T. Wakano, N. Fujimura, Y. Morinaga, N, Abe A. Ashda and T. Ito, Physica E (Amsterdam) Vol. 10 (2001), p.260.

[15] R.B. Yang, C.Y. Tsay, W.F. Liang, C.K. Lin, J. Appl. Phys. Vol. 107 (2010), pp. 09A523: 1-3.

[16] Yongbao Feng, Tai Qiu. J. Nanjing Univ. Aeron. Astron. Vol. 37(2005), p.222.

In order to see related information, you need to Login.