Behavior of A356 Alloy in Semi-Solid State Produced by Mechanical Stirring

Abstract:

Article Preview

This investigation studied semi-solid (SSM) aluminum-silicon alloy produced by mechanical stirring. Aluminum alloys produced by this method, are widely used instead of conventional die casting and forging processes. In this research by using a mechanical stirrer slurry maker, the effects of stirring speed, the solid fraction percent and mold temperature are investigated on micro-structure and hardness of A356 aluminum alloy in semi-solid casting. By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularizing dendrites of primary α-AL phase. It is determined that stirring temperature of 608°C and stirring speed of 300 RPM leads to the uniform grains distribution and therefore arrives to better hardness for the produced billets.

Info:

Periodical:

Edited by:

Hongxi Zhu and Linjiang Wang

Pages:

331-336

Citation:

S. Nourouzi et al., "Behavior of A356 Alloy in Semi-Solid State Produced by Mechanical Stirring", Advanced Materials Research, Vol. 402, pp. 331-336, 2012

Online since:

November 2011

Export:

Price:

$38.00

[1] M.C. Flemings: J. Met. Mat. Trans. A, 22A: 957, (1991).

[2] M. Kiuchi, S.A. Augiyama: ISIJ. International, 24(1), p.32, (1995).

[3] K. Sukumaran, B.B. Pai, M. Chakraborty: J. Mat. Sci. & Eng., A369, p.275, (2004).

[4] M. Seijiro, H. Yasunori, M. Ken Ichiro: J. of materials processing technology, 125-126, p.477–482, (2002).

[5] B.S. Lee, D.H. Joo, M.H. Kim: Materials science and engineering, A 402, p.170–176. (2005).

[6] J. Sihai, J. Zhengyi and Bu. Jinglong: Advanced Materials Research, Vol. 146-147, pp.1723-1728.

[7] Y. Vogel, K. Zhang: Journal of materials processing technologgy, 137, pp.195-200. (2003).

[8] A. Vogel, R.D. Doherty, B. Cantor: Proceedings of International conference on solidification, Metals society, London, 518 (1979).

[9] T. Hellawel, D.H. Stjohn, T. Steiberg: Materials science and engineering, A286, pp.18-29. (2000).

[10] A. Hellawell, Conference, Sheffield, UK, 1996: 40, (1996).

[11] A.M., Mullis: J. Acta Mater, 47: 1783, (1999).

[12] R. Haghayaghi, E.J. Zoqui, A. Halvaee: J. of materials processing technology, 169, p.382–387, (2005).

[13] Z. Fan: Proceedings of Ninth North American Manufacturing Research Conference, pp.140-144, (1981).

[14] D. Barabazon, D.J. Browne, A.J. Carr: Materials science and engineerin, A. 236, p.370–381. (2002).

[15] B. Niroumand, K. Xia: Materials Science and Engineering, A283, p.70–75, (2000).

[16] P. Falak, B. Niroumand: Scripta Materialia 53, p.53–57. (2005).

[17] H. Mirzadeh, B. Niroumand: J. of Materials Processing Tech., 209, p.4977–4982. (2009).

[18] R.H. Greaves, H. Wrighton: Practical Microscopical Metallography, Science Paperbacks, London, (1971).

[19] E.J. Zoqui, M.H. Robert: J. Mater. Proc. Tech. 109, p.215, (2001).