Ferroelectric and Electrical Properties of Potassium Nitrate Thin Composite Layers


Article Preview

The ferroelectric and electrical properties of potassium nitrate (KNO3): polyvinylidene fluoride (PVDF) composite layers prepared by melt press method have been studied. The stability of ferroelectric phase (phase –III) of potassium nitrate (KNO3) in the composite layers at room temperature have been analyzed. The temperature dependence of ferroelectric hysteresis loop (P-E) characteristics have been investigated in the composite layers. The electrical conductivity (σ) and dielectric behaviour of composite layers have been characterized. The conductivity and dielectric variation with temperature during heating and cooling modes has been found to provide the knowledge of phase transition in the composite. The capacitance –-voltage (C-V) and conductance - voltage (G-V) characteristics clearly show the ferroelectric butterfly loop, which is attributed to the features of ferroelectricity in the composite layers at room temperature. The coexistence of ferroelectric phase (phase III) with paraelectric phase (phase II) has also been observed at room temperature in the composite layers during dielectric and conductivity measurements.



Advanced Materials Research (Volumes 403-408)

Edited by:

Li Yuan




N. Kumar and R. Nath, "Ferroelectric and Electrical Properties of Potassium Nitrate Thin Composite Layers", Advanced Materials Research, Vols. 403-408, pp. 607-617, 2012

Online since:

November 2011




[1] J.F. Scott, Ferroelectric memories, Springer-Verlag Berlin Heidelberg, Germany, (2000).

[2] J.F. Scott, The Physics of Ferroelectric Ceramic Thin Films for Memory Applications, Ferroelectric Rev., Vol. 1, pp.1-129, (1998).

[3] M. Alexe and A. Gruverman , Nanoscale Characterization of Ferroelectric Materials, Springer (Eds. ) (2004).

[4] M.E. Lines, and A.M. Glass, Principles and Applications of Ferroelectrics and Related Compounds, Clarendon Press, Oxford, (1977).

[5] Hari Singh Nalwa, Hand book of Low and High Dielectric Constant Materials and Their Applications, Vol. 1, Materials and Processing, (Academic Press, 1999).

[6] B. Hilczer, Jan Kulek, E. Markiewicz and M. Kosec, Dielectric and Pyroelectric Response of PLZT-P(VDF/TrFE) Nanocomposites, Ferroelectrics, Vol. 293, pp.253-265, (2003).

DOI: https://doi.org/10.1080/00150190390238540

[7] C.K. Chiang and R. Popielarz, Polymer Composites with High Dielectric Constant, Ferroelectrics, Vol. 275, pp.1-9 (2002).

[8] R. Guo, A.S. Bhalla, C.A. Randall, Z. P. Chang, and L.E. Cross, Polarization Mechanism of Morphotropic Phase Boundary Lead Bariaum Niobate (PBN) Compositions, J. Appl. Phys., Vol. 67, pp.1453-1460 (1990).

DOI: https://doi.org/10.1063/1.345651

[9] R. Popielarz, C.K. Chiang, R. Nozaki, and J. Obrzut, Dielectric Properties of Polymer/Ferroelectric ceramic Composites from 100 Hz to 10 GHz, Macromolecules, Vol. 34, pp.5910-5915 (2001).

DOI: https://doi.org/10.1021/ma001576b

[10] Kenji Uchino, Ferroelectric Devices Printed in the USA S. Sawada, S. Namura, and S. Fujii, Ferroelectricity in the Phase III of KNO3, J. Phys. Soc. Japan, Vol. 13, pp.1549-1549 (1958).

DOI: https://doi.org/10.1143/jpsj.13.1549

[11] J.P. Nolta and N.W. Schubring, Ferroelectricity in Potassium Nitrate at Room Temperature, Phys. Rev. Lett., Vol. 9, pp.285-286 (1962).

DOI: https://doi.org/10.1103/physrevlett.9.285

[12] J. P. Nolta, N. W. Schubring, and R. A. Dork, Temperature Dependence of the III-II Transition Rate of KNO3 at Atmospheric Pressure, J. Chem. Phys. Vol. 42, pp.508-510 (1965).

DOI: https://doi.org/10.1063/1.1695964

[13] S. Sawada, S. Nomura, and Y. Asao, Dielectric Behavior of KNO3 in Its Ferroelectric Phase III, J. Phys. Soc. Japan, Vol. 16, pp.2486-2494 (1961).

DOI: https://doi.org/10.1143/jpsj.16.2486

[14] Oswaldo Dieguez and Daid Vanderbilt, Theoretical Study of Ferroelectric Potassium Nitrate, Phys. Rew B, Vol. 76, p.134101 (2007).

[15] A. M. Glass, Chapter 1 in The Applications of Ferroelectric Polymers, Wang T.T., Herbert J.M., and Glass A.M., (Ed. ), Blackie & Sons. Ltd, Chapman and Hall, New York, (1988).

[16] H. S. Nalwa, (Ed. ) Ferroelectric Polymers, Marcel Dekker, Inc. New York, (1995).

[17] F. Bauer, E. Fousson, Q.M. Zhang and L.M. Lee, Ferroelectric Copolymers and Terpolymers for Electrostrictors: Synthesis and Properties, IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp.293-298 (2004).

DOI: https://doi.org/10.1109/tdei.2004.1285900

[18] Cheng Huang, R. Klein, Feng Xia, Hengfeng Li, Q.M. Zhang, Francois Baur and Z. -Y. Cheng, Poly(vinylidene fluoride-trifluoroethylene) Based High Performance Electroactive Polymers, IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp.299-311, (2004).

DOI: https://doi.org/10.1109/tdei.2004.1285901

[19] Q.M. Zhang, V. Bharti, and X. Zhao, Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron–Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer, Science, Vol. 280, pp.2101-2104 (1998).

DOI: https://doi.org/10.1126/science.280.5372.2101

[20] V. Bharti and Q.M. Zhang., Dielectric Study of the Relaxor Ferroelectric Poly(vinylidene fluoride-trifluoroethylene) Copolymer System, Physical Review B, Vol. 63, pp.184103-1 (2001).

DOI: https://doi.org/10.1103/physrevb.63.184103

[21] Z. -Y. Cheng, V. Bharti,T. -B Xu, Shexi Wang, Q.M. Zhang, T. Ramotowski, F. Tito and R. Ting, Transverse Strain Response in Electrostrictive Poly (vinylidene fluoride-trifluoroethylene) Films and Development of a Dilatometer for the Measurements, J. Appl. Phys., Vol. 86, pp.2208-2214 (1999).

DOI: https://doi.org/10.1063/1.371032

[22] Zhi-Min Li, Sui-Qiong Li, and Z. -Y. Cheng, Crystalline Structure and Transition Behavior of Recrystallized-Irradiated P(VDF-TrFe) 65/35 Copolymer, J. Appl. Phys., Vol. 97, pp.014102-1 (2005).

DOI: https://doi.org/10.1063/1.1827918

[23] M. Stein and B. -J. Jungickel, Dependence of Ferroelectric Switching Time of PVDF on Mechanical Stress and on Blending, IEEE. Trans. Dielectr. Electr. Insul., Vol. 4, pp.167-171 (1997).

DOI: https://doi.org/10.1109/94.595241

[24] J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications, University of California Press. London, (1979).

[25] M.J. Harris, Ferroelectric Ordering in KNO3, Solid State Commu., Vol. 84, pp.557-561(1992).

[26] G.W. Taylor and B.J. Lechner, Ferroelectric Properties of Stable and Metastable Phase -III KNO3, J. Appl. Phys., Vol. 39, pp.2372-2379 (1968).

DOI: https://doi.org/10.1063/1.1656563

[27] M. J. Westphal, Particle size and cooperative behaviour effects on KNO3 phase transition, J. Appl. Phys, vol. 74, pp.6107-6114, (1993).

[28] A. ManSingh and A.M. Smith, Dielectric Dispersion in the Paraelectric Phase of Potassium Nitrate, J. Phys. D : Appl. Phys., Vol. 4, pp.1792-1796 (1971).

DOI: https://doi.org/10.1088/0022-3727/4/11/325

[29] F. EL-Kabbany, S. Taha, E. H. EL-Khawas, Electrical Properties of Carbon-Doped KNO3 Thin Layers, J. Mater. Sci., Vol. 24, pp.1819-1826 (1989).

DOI: https://doi.org/10.1007/bf01105711

[30] A. Mansingh and A. M. Smith, Dielectric and Electrical Conductivity Studies in Potassium Nitrite and Potassium Nitrate, J. phys. D: Appl. Phys., Vol. 4, pp.560-566 (1971).

[31] W.J. Schaffer and D.E., Mikkola, Phase Stability of Ferroelectric KNO3 Switching Devices during Polarization Aging, J. Appl. Phys., Vol. 64, pp.2563-2570 (1988).

DOI: https://doi.org/10.1063/1.341643

[32] R. Murugun, A. Ghule, and H. Chang, Raman Studies on Ferroelectric Phase (Phase III) of KNO3, J. Appl. Phys., Vol. 86, pp.6779-6788 (1999).

DOI: https://doi.org/10.1063/1.371727

[33] N. Kumar and R. Nath, Ferroelectric Phase Stabilities in Potassium Nitrate : Polyvinylidene Fluoride Composite Films, J. Appl. Phys., Vol. 97, p.024105 (2005).

DOI: https://doi.org/10.1063/1.1821642

[34] A. ManSingh and A.M. Smith, Dielectric Dispersion in the Paraelectric Phase of Potassium Nitrate, J. Phys. D : Appl. Phys., Vol. 4, pp.1792-1796 (1971).

DOI: https://doi.org/10.1088/0022-3727/4/11/325

[35] U. Kawabe, T. Yangi, and S. Sawada, Dielectric and X-Ray Studies of KNO3-Series Mixed Crystals, J. phys. Soc. Japan, Vol. 20, pp.2059-2073 (1965).

DOI: https://doi.org/10.1143/jpsj.20.2059

[36] Nobuhito Ogata and Hiroshi Ishiwara, A Model for High Frequency C-V Characteristics of Ferroelectric Capacitors, IEICE Trans. Electron., Vol. E84-C, pp.777-784 (2001).

[37] L. Zheng ,C. Lin, and T.P. Ma, Current-Voltage Characteristics of Asymmetric Ferroelectric Capacitors, J. Phys. D. Appl. Phys., Vol., 29, pp.457-461 (1996).

DOI: https://doi.org/10.1088/0022-3727/29/2/025

[38] V. Lingwal and N.S. Panwar, Capacitance-Voltage Characteristics of NaNbO3 Thin Films, J. Appl. Phys., Vol. 94, pp.4571-4576(2003).

DOI: https://doi.org/10.1063/1.1608470

[39] K.C. Sekhar and R. Nath, Study of Ferroelectric Properties in Sodium Nitrite : Poly(vinyl alcohol) Nanocomposite Films, : J. Appl. Phys, Vol. 102 p.044114, (2007).

DOI: https://doi.org/10.1063/1.2772599

[40] M. Maleto, E. Pevtsov, A. sigov, and A. Svontina, Ferroelectrics 286, 301 (2003).

[41] D.G. Lim, B.S. Jang, S.I. Moon, C.Y. Won, J. Yi, Characteristics of LiNbO3 Memory Capacitors Fabricated Using a Low Thermal Budget Process, Solid State Electronics, Vol. 45, pp.1159-1163 (2001).

DOI: https://doi.org/10.1016/s0038-1101(01)00042-9

[42] S. Woo. Chul Yi, Chang-Su Seo, Sook-II Kwun and Jong-Gul Yoon, Temperature Dependence of Capacitance/ Current-Voltage Characteristics of Highly (0001) – Oriented YMnO3 Thin Films on Si, Appl. Phys. Lett., Vol. 77, pp.1044-1046 (2000).

DOI: https://doi.org/10.1063/1.1289067

[43] S.G. Ingle and S.C. Joshi, Unstable Point Domains in Ferroelectrics, Phys. Rev. B., Vol. 34, pp.4840-4845 (1986).

DOI: https://doi.org/10.1103/physrevb.34.4840

[44] Nobuhito Ogata and Hiroshi Ishiwara, A Model for High Frequency C-V Characteristics of Ferroelectric Capacitors, IEICE Trans. Electron., Vol. E84-C, pp.777-784 (2001).

Fetching data from Crossref.
This may take some time to load.