Preparation of TiB2-TiC Intermetallic Phase via Mechanical Alloying

Abstract:

Article Preview

TiB2-TiC intermediate metal powder was fabricated via mechanical alloying (MA) processing, and the phase formation and powder morphology characteristics were studied by using X-ray diffraction(XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA). Starting materials were milled at ambient temperature in argon protective atmosphere. Prepared intermetallic phase of TiB2-TiC included, Ti3B4、Ti2B5、TiC0.06. Used milled powders prepare TiB2-TiC composition via two-way vacuum hot pressing sintering furnace not only decrease the time of preparation, but also reduce temperature of reaction, because of the preactivation reaction during MA promote the reactions. Therefore, this process will promote TiB2-TiC composite ceramics in engineering applications.

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Edited by:

Li Yuan

Pages:

634-639

Citation:

P. Luo et al., "Preparation of TiB2-TiC Intermetallic Phase via Mechanical Alloying", Advanced Materials Research, Vols. 403-408, pp. 634-639, 2012

Online since:

November 2011

Export:

Price:

$38.00

[1] G. Wen, S.B. Li, B.S. Zhang, Z.X. Guo. Acta. Mater. 49 (2001)1463–1470.

[2] Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.L. Du, Q.C. International Journal of Refractory Metals & Hard Materials. 26 (2008) 383–388.

[3] M. Berger, E. Coronel, E. Olsson. J. Surf. Coat. Technol. 185 (2004) 240–244.

[4] A. Calka, D. Oleszak. J. Alooys Compd. 440 (2007) 346–348.

[5] L.X. Qiu, B. Yao, Z.H. Ding, Y.J. Zheng, X.P. Jia, W.T. Zheng. J. Alooys Compd. 456 (2008) 436–440.

[6] Barsoum. M. W, Houng B. J. Am. Ceram. Soc. 76(1993)1445–51.

[7] Bhaumik. S. K, Divakar. C, Singh. A. K, Upadhyaya. G.S. J. Mater. Sci. Eng. 279(2000)275–81.

[8] Li JL, Li F, Hu K, Zhou Y. J. Eur. Ceram. Soc. 21 (2001) 2829–2833.

[9] Y.F. Yang, H.Y. Wang, R.Y. Zhao, Y.H. Liang, Q.C. Jiang. J. Met. Mater. Int. 26 (2008) 77–83.

[10] C.J. Lu, Z.Q. Li. J. Alooys Compd. 448 (2008) 198–201.

[11] Singh, M., Rai, K. N. and Upadhyaya, G. S. J. Mater. Chem. Phys. 67(2001)226–233.

[12] Zhao. H, Cheng. Y. J. Ceram. Int. 25(1999) 353–358.

[13] Gutmanas, E. Y. and Gotman, I. J. Eur. Ceram. Soc. 19(1999) 2381–2393.

[14] Brodkin. D, Kalidindi. S, Barsoum. M, Zavaliangos. J. Am. Ceram. Soc. 79(7)(1996 )1945–(1952).

[15] Lee. S. K, Kim. D, Kim. C. K. J. Mater. Sci. 29(1994)4125–4130.

[16] Mogilevsky. P, Werner. A, Dudek. H. J. Mater. Sci. Eng. A. 242(1998)235–247.

[17] Kubaschewski. O, Alcock. C. B. M. Metallurgical Thermochemistry. Pergamon, Oxford, 1979, p.258–449.

[18] L. Lu, M.O. Lai, S. Zhang. J. Mater. Pro. Tech. 67 (1997) 100-104.

[19] L. Lu, M. O. Lai, H. Y. Wang. J. Mater. Sci. 35(1)(2000)241-248.

[20] E.D. Wang, J. L Liu, Z.Y. Liu. J. Powdr. Met. Tech. 20(2)(2002)109-112. (in Chinese).