Microstructure, Mechanical and Corrosion Behaviour of AN AA2024-T3 FSW Joint


Article Preview

The FSW weld consists of three distinct microstructural zones. The microstructure inside each zone is directly impacted by the FSW process parameters. The aim of this article is to correlate microstructure, microhardness and corrosion sensitivity of a AA-2024-T3 FSW joint for one processing parameter set. A microstructural analysis has been conducted in each weld zone by the combination of TEM observations, chemical and DSC analysis. Moreover, a small electrochemical cell was used to estimate the corrosion sensitivity of the distinct zones by localized open circuit potential measurements all along the weld. Mechanical properties were evaluated using Vickers microhardness measurements. The results show a direct correlation between mechanical property evolution, local corrosion process involved and microstructure modification.



Edited by:

T. Chandra, M. Ionescu and D. Mantovani




E. Bousquet et al., "Microstructure, Mechanical and Corrosion Behaviour of AN AA2024-T3 FSW Joint", Advanced Materials Research, Vol. 409, pp. 257-262, 2012

Online since:

November 2011




[1] M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, W.H. Bingel. Properties of Friction-Stir-Welded 7075 T651 Aluminum. Metallurgical and Material Transactions A 29A. (1998), p.1955-(1964).

DOI: https://doi.org/10.1007/s11661-998-0021-5

[2] M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, J.H. Driver. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Materialia 52. (2005), p.693–697.

DOI: https://doi.org/10.1016/j.scriptamat.2004.12.027

[3] T.R. McNelley,S. Swaminathan and J.Q. Su. Recrystallization mechanisms during friction stir welding. Scripta Materialia 58. (2008), p.349–354.

DOI: https://doi.org/10.1016/j.scriptamat.2007.09.064

[4] M.A. Sutton, B. Yang, A.P. Reynolds, R. Taylor. Microstructural studies of friction stir welds in 2024-T3 aluminum. Materials Science and Engineering A 323. (2002), p.160–166.

DOI: https://doi.org/10.1016/s0921-5093(01)01358-2

[5] C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Materialia 53. (2005), p.2447–2458.

DOI: https://doi.org/10.1016/j.actamat.2005.02.007

[6] J.B. Lumsden, M.W. Mahoney, C.G. Rhodes, G.A. Pollock. Corrosion behavior of Friction-Stir-Welded AA7050-T7651. Corrosion 59 N°3. (2003), pp.212-219.

DOI: https://doi.org/10.5006/1.3277553

[7] R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, A.J. Davenport. Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456. Materials Science and Engineering A 519. (2009), p.1–8.

DOI: https://doi.org/10.1016/j.msea.2009.04.034

[8] M. Jariyaboon, A.J. Davenport, R. Ambat, B.J. Connolly, S.W. Williams, D.A. Price. The effect of welding parameters on the corrosion behaviour of friction stirwelded AA2024–T351. (2007), p.877–909.

DOI: https://doi.org/10.1016/j.corsci.2006.05.038

[9] ASTM-G110, Standard Practice for Evaluating Intergranular Corrosion Resistance of Heat Treatable Aluminium Alloys by Immersion in Sodium Chloride + Hydogen Pexoxide Solution, (2003).

DOI: https://doi.org/10.1520/g0110-92r15