The Influence of Alloying Elements on Grain Boundary and Bulk Cohesion in Aluminum Alloys: Ab Initio Study

Abstract:

Article Preview

The effect of B, Si, P, Cr, Ni, Zr and Mg on cohesive properties of Al and the special grain boundary (GB) Σ5 (210)[100], as well as their segregation behavior at the GB and the (210) surface are studied by first principles method. The analysis of these parameters allows us to single out Ni as the best and phosphorus as the worst interatomic bond strengthening alloying elements.

Info:

Periodical:

Edited by:

T. Chandra, M. Ionescu and D. Mantovani

Pages:

417-422

Citation:

V. I. Razumovskiy et al., "The Influence of Alloying Elements on Grain Boundary and Bulk Cohesion in Aluminum Alloys: Ab Initio Study", Advanced Materials Research, Vol. 409, pp. 417-422, 2012

Online since:

November 2011

Export:

Price:

$38.00

[1] C. Kittel: Introduction to Solid State Physics, 7th ed. (Wiley, NY, 1996).

[2] I.M. Razumovskii et al.: Materials Science and Engineering: A Vol. 497 (2008), p.18.

[3] M.W. Finnis: J. Phys.: Condens. Matter Vol. 8 (1996. ) , p.5811.

[4] J.R. Rice and R. Thomson: Philos. Mag. Vol. 29 (1974), p.73.

[5] J.R. Rice and J. -S. Wang: Mater. Sci. Eng. Vol. A 107 (1989), p.23.

[6] A.N. Orlov, V.H. Perevezentsev and V.V. Rybin: Grain boundaries in metals (Metallurgy, Moscow, 1980).

[7] B.B. Straumal: Grain boundaries phase transitions (Nauka , Moscow, 2003).

[8] B.S. Bokstein, Ch.V. Kopetski and L.S. Shvindlerman: Thermodynamics and Kinetics of Grain Boundaries in Metals (Metallurgy , Moscow, 1986).

[9] I.F. Kolobnev: Heat Resistance of Cast Al alloy, 2nd ed (Metallurgy, Moscow 1973).

[10] Aluminum: Properties and Physical Metallurgy, edited by J. Hatch (American Society for Metals, Metals Park, Ohio, 1984).

[11] B.A. Kolachev, V.I. Elagin and V.A. Livanov: Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys, 4th ed. (MISiS, Moscow, 2005).

[12] D.I. Thomson, V. Heine, M.C. Payne, N. Marzari and M.W. Finnis: Acta Mater. Vol. 48 (2000), p.3623.

[13] Y. Zhang et al.: J. Phys. Condens. Matter, Vol. 18 (2006), p.5121.

[14] S. Ogata, H. Kitagawa, Y. Maegawa and K. Saitoh: Comput. Mater. Sci. Vol. 7 (1994) p.271.

[15] A.V. Logunov et al.: Perspektivnye materialy Vol. 2 (2008), p.10.

[16] A.V. Logunov et al.: DOKLADY PHYSICS Vol. 53 (2008), p.438.

[17] P.E. Blöchl: Phys Rev B Vol. 50 (1994), p.17953.

[18] G. Kresse and J. Furthmuller: Phys Rev B Vol. 54 (1996), p.11169.

[19] J.P. Perdew, K. Burke and M. Ernzerhof: Phys Rev Lett, Vol. 78 (1997), p.1396.

[20] M.S.S. Brooks and B. Johansson: J. Phys. F: Met. Phys. Vol. 13 (1983), p. L197.

[21] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen: Cohesion in Metals (North-Holland, Amsterdam, 1988).

[22] W.R. Tyson and W.R. Miller: Surf Sci, Vol. 62 (1977), p.267.

[23] G.C. Hasson and С. Goux: Ser. Metall. Vol. 5 (1971) p.889.

[24] G. Lu and N. Kioussis: Phys. Rev. B Vol. 64 (2001), p.024101.

[25] Y. Mishin, M. Asta and Ju Li: Acta Mater. Vol. 58 (2010), p.1117.

[26] T. Uesugi and K. Higashi: Materials Science Forum Vol. 654-656 (2010), p.942.

[27] A.Y. Lozovoi and A.T. Paxton: Phys. Rev. B, Vol. 77 (2008), p.165413.

Fetching data from Crossref.
This may take some time to load.