Experimental Verification of Circuit Analog of Three- and Four-Level Electromagnetically Induced Transparency

Abstract:

Article Preview

Since a two-level resonant atomic system can be simulated by a simple circuit, three- and four-level electromagnetically induced transparency (EIT) that occur due to light-atom interaction can find its classical counterpart in circuit analog. As the optical response of an EIT atomic medium (including atomic vapors and semiconductor-quantum-dot dielectrics) can be controlled via tunable quantum interference induced by applied external control fields, in the scheme of circuit analog, such a controllable manipulation is achieved via capacitor coupling, where two loops are coupled by a capacitor that can represent the applied control fields in atomic EIT. Both numerical simulation and experimental demonstration of three- and four-level EIT were performed based on such a scenario of circuit analog. The classical “coherence” relevant to quantum interference among transitions pathways driven by both probe and control fields in EIT atomic systems has been manifested in the present circuit analog of EIT.

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Edited by:

Jinglong Bu, Zhengyi Jiang and Sihai Jiao

Pages:

1340-1349

DOI:

10.4028/www.scientific.net/AMR.415-417.1340

Citation:

X. Chen et al., "Experimental Verification of Circuit Analog of Three- and Four-Level Electromagnetically Induced Transparency", Advanced Materials Research, Vols. 415-417, pp. 1340-1349, 2012

Online since:

December 2011

Export:

Price:

$35.00

[1] S. E. Harris: Phys. Today Vol. 50 (No. 7) (1997), p.36.

[2] J. L. Cohen and P. R. Berman: Phys. Rev. A Vol. 55 (1997), p.3900.

[3] S. Y. Zhu and M. O. Scully: Phys. Rev. Lett. Vol. 76 (1996), p.388.

[4] C. Champenois, G. Morigi and J. Eschner: Phys. Rev. A Vol. 74 (2006), 053404.

[5] A. M. Zheltikov: Phys. Rev. A Vol. 74 (2006), 053403.

[6] A. Gandman, L. Chuntonov, L. Rybak and Z. Amitay: Phys. Rev. A Vol. 75 (2007), 031401.

[7] C. M. Krowne and J. Q. Shen: Phys. Rev. A Vol. 79 (2009), 023818.

[8] H. Schmidt and A. Imamoğlu: Opt. Lett. Vol. 21 (1996), p. (1936).

[9] L. J. Wang, A. Kuzmich and A. Dogariu: Nature Vol. 406 (2000), p.277.

[10] P. Arve, P. Jänes and L. Thylén: Phys. Rev. A Vol. 69 (2004), 063809.

[11] J. Q. Shen, Z. C. Ruan and S. He: Phys. Lett. A Vol. 330 (2004), p.487.

[12] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen and H, Giessen: Nano Lett. Vol. 10 (No. 4) (2010), p.1103.

[13] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau and H. Giessen: Nature Materials Vol. 8 (2009), p.758.

DOI: 10.1038/nmat2495

[14] C. L. G. Alzar, M. A. G. Martinez and P. Nussenzveig: Am. J. Phys. Vol. 70 (No. 1) (2002), p.37; N. Papasimakis, V. A. Fedotov, N. I. Zheludev and S. L. Prosvirnin: Phys. Rev. Lett. Vol. 101 (2008), 253903.

[15] Y. Chang and C. P. Sun: Phys. Rev. A Vol. 83 (2011), 053834.

[16] M. O. Scully and M. S. Zubairy: Quantum Optics, Chapt. 7 (Cambridge Univ. Press, Cambridge, UK 1997).

[17] J. Q. Shen: New J. Phys. Vol. 15 (2007), p.374.

[18] J. Q. Shen and P. Zhang: Opt. Express Vol. 15 (2007), p.6484.

[19] E. Paspalakis and P. L. Knight: J. Opt. B: Quantum Semiclass. Opt. Vol. 4 (2002), p. S372.

[20] J. Q. Yao, H. B. Wu and H. Wang: Acta Sin. Quantum Opt. 9 (2003), p.121.

[21] A. Gharibi, J. Q. Shen and J. Gu: J. Phys. B: At. Mol. Opt. Phys. Vol. 42 (2009), 055502.

In order to see related information, you need to Login.