A Microvalve Driven by a Ferrofluid-Based Actuator

Abstract:

Article Preview

A novel ferrofluid-based microvalve adopting an electromagnetic actuation is presented. In the device, ferrofluid controlled by magnetic force is used as a microactuator. The deflection of the diaphragm caused by the ferrofluid-based actuator opens or closes the fluid flow in the microchannel. A detailed description of the design and working principle of the microvalve is presented. The driving force generated by the ferrofluid under applied magnetic field has been measured by a microforce sensor. And the deflection of the diaphragm has been simulated by ANSYS software.

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Edited by:

Cai Suo Zhang

Pages:

3767-3772

Citation:

T. G. Liu et al., "A Microvalve Driven by a Ferrofluid-Based Actuator", Advanced Materials Research, Vols. 433-440, pp. 3767-3772, 2012

Online since:

January 2012

Export:

Price:

$41.00

[1] R. Perez-Castillejos, J. A. Plaza, J. Esteve, P. Losantos, and M. C. Acero, et al., The use of ferrofluids in micromechanics, Sensors and Actuators A: Physical, vol. A84, Aug. 2000, pp.176-80, doi: 10. 1016/S0924-4247(99)00318-0.

DOI: https://doi.org/10.1016/s0924-4247(99)00318-0

[2] S. Bohm, G. J. Burger, M. T. Korthorst, and F. Roseboom, A micromachined silicon valve driven by a miniature bi-stable electro-magnetic actuator, Sensors and Actuators A: Physical, vol. A80, Mar. 2000, pp.77-83.

DOI: https://doi.org/10.1016/s0924-4247(99)00298-8

[3] R. Luharuka, S. LeBlanc, J. S. Bintoro, Y. H. Berthelot, and P. J. Hesketh, Simulated and experimental dynamic response characterization of an electromagnetic microvalve, Sensors and Actuators A: Physical, vol. 143, May 2008, pp.399-408.

DOI: https://doi.org/10.1016/j.sna.2007.10.084

[4] J. S. Bintoro and P. J. Hesketh, An electromagnetic actuated on/off microvalve fabricated on top of a single wafer, Journal of Micromechanics and Microengineering, vol. 15, Jun. 2005, pp.1157-73, doi: 10. 1088/0960-1317/15/6/006.

DOI: https://doi.org/10.1088/0960-1317/15/6/006

[5] Q. A. Huang and N. K. S. Lee, Analytical modeling and optimization for a laterallydriven polysilicon thermal actuator, Microsystem Technologies, vol. 5, Feb. 1999, pp.133-137, doi: 10. 1007/s005420050152.

[6] R. Maeda, J. J. Tsaur, S. H. Lee, and M. Ichiki, Piezoelectric microactuator devices, Journal of Electroceramics, vol. 12, Jan. 2004, pp.89-100, doi: 10. 1023/B: JECR. 0000034003. 47433. 7e.

DOI: https://doi.org/10.1023/b:jecr.0000034003.47433.7e

[7] Y. Sun, D. Piyabongkarn, A. Sezen, B. J. Nelson, and R. Rajamani, A high-aspect-ratio two-axis electrostatic microactuator with extended travel range, Sensors and Actuators A: Physical, vol. 102, Dec. 2002, pp.49-60.

DOI: https://doi.org/10.1016/s0924-4247(02)00298-4

[8] H. Hartshorne, C. J. Backhouse, and W. E. Lee, Ferrofluid-based microchip pump and valve, Sensors and Actuators B: Chemical, vol. 99, May 2004, pp.592-600, doi: 10. 1016/j. snb. 2004. 01. 016.

DOI: https://doi.org/10.1016/j.snb.2004.01.016

[9] E. G. Kim, J. G. Oh, and B. Choi, A study on the development of a continuous peristaltic micropump using magnetic fluids, Sensors and Actuators A: Physical, vol. 128, Mar. 2006, pp.43-51, doi: 10. 1016/j. sna. 2006. 01. 021.

DOI: https://doi.org/10.1016/j.sna.2006.01.021

[10] G. S. Park and K. Seo, A study on the pumping forces of the magnetic fluid linear pump, IEEE Transactions on Magnetics, vol. 39, May 2003, pp.1468-1471, doi: 10. 1109/TMAG. 2003. 810218.

DOI: https://doi.org/10.1109/tmag.2003.810218

[11] B. M. Berkovsky, Magnetic fluids engineering applications, Oxford: Oxford University Press, (1993).