Influence of Process Parameters on the Mechanical Enhancement of Copper-DHP by FSP

Abstract:

Article Preview

Friction Stir Processing (FSP) is an innovative solid-state processing technology, which is being currently used to enhance locally the mechanical properties of conventional materials. In this work, 1 and 3 mm-thick copper-DHP plates were processed with the aim of simulating surface (SFSP) and bulk (VFSP) processing. The influence of the processing conditions on the microstructure and mechanical properties of the processed materials was analyzed. It was found that the tool geometry, which has a close relation with the plastic deformation and dynamic recrystallization kinetics inside the stirred volume, the processing parameters and the heat exchange conditions, which determine the extent of dynamic recrystallization and annealing phenomenon, are determinant in FSP.

Info:

Periodical:

Edited by:

Faruk Yigit and Mohammed S. J. Hashmi

Pages:

631-636

Citation:

I. Galvao et al., "Influence of Process Parameters on the Mechanical Enhancement of Copper-DHP by FSP", Advanced Materials Research, Vol. 445, pp. 631-636, 2012

Online since:

January 2012

Export:

Price:

$38.00

[1] K. Surekha and A. Els-Botes: Mater. Des. Vol 32 (2011), pp.911-916.

[2] M. Barmouz, M. K. B. Givi and J. Seyfi: Mater. Charact. Vol 62 (2011), pp.108-117.

[3] R. S. Mishra, Z. Y. Ma and I. Charit: Mater. Sci. Eng. A Vol 341 (2003), pp.307-310.

[4] A. Kurt, I. Uygur and E. Cete: J. Mater. Process. Technol. Vol 211 (2011), pp.313-317.

[5] J. -Q. Su, T. W. Nelson, T. R. McNelley and R. S. Mishra: Mater. Sci. Eng. A (2011), in press.

[6] B. Yang, J. Yan, M. A. Sutton and A. P. Reynolds: Mater. Sci. Eng. A Vol 364 (2004), pp.55-65.

[7] H. Lombard, D. G. Hattingh, A. Steuwer and M. N. James: Eng. Fract. Mech. Vol 75 (2008), p.341–354.

[8] M. J. Peel, A. Steuwer, P. J. Withers, T. Dickerson, Q. Shi and H. Shercliff: Metall. Mater. Trans. A Vol 37A (2006), pp.2183-2193.

[9] R. Nandan, T. DebRoy and H. K. D. H. Bhadeshia: Progr. Mater. Sci. Vol 53 (2008), p.980–1023.

[10] T. U. Seidel and A. P. Reynolds: Metall. Mater. Trans. A Vol 32A (2001), pp.2879-2884.

[11] J. J. Shen, H. J. Liu and F. Cui: Mater. Des. Vol 31 (2010), p.3937–3942.

[12] K. Kumar and S. V. Kailas: Mater. Sci. Eng. A Vol 485 (2008), pp.367-374.

[13] R. M. Leal, C. Leitão, A. Loureiro, D. M. Rodrigues and P. Vilaça: Mater. Sci. Eng. A Vol 498 (2008), pp.384-391.

[14] A. Tronci, R. McKenzie, R. M. Leal and D. M. Rodrigues: Sci. Technol. Weld. Joining (2011), in press.

[15] P. A. Colegrove, H. R. Shercliff and R. Zettler: Sci. Technol. Weld. Joining Vol 12 (2007), pp.284-297.

[16] G. M. Xie, Z. Y. Ma and L. Geng: Scr. Mater. Vol 57 (2007), p.73–76.

[17] W. -B. Lee and S. B. Jung: Mater. Lett. Vol 58 (2004), p.1041– 1046.

[18] M. J. C. Rosales, N. G. Alcantara, J. Santos and R. Zettler: Mater. Sci. Forum Vol 636-637 (2010), pp.459-464.

Fetching data from Crossref.
This may take some time to load.