Authors: Jian Bing Lv, He Lin Fu, Yang Li, Zhe Liu
Abstract: Space steel structure stability has been a focused problem in the engineering field, in the past the study mainly concentrated on the single layer dome structure stability and elastic stability analysis, but with the structure shape complex, new type structure emerges continually, it needs more accurate stability analysis method. In this paper the linear and nonlinear buckling theory and analysis method are introduced firstly, and then a new type steel space structure with partially double layer dome structure is chosen as the computational model. The structure self vibration mode, linear buckling analysis and nonlinear buckling process and buckling characteristics are studied by the FEM commercial code ANSYS; the nonlinear load-deflection curves at the different points are gotten and some conclusions about this kind of structure are drawn.
387
Authors: Yong Mei Li, Kun Hu, Wei Jing Zhang
Abstract: Suspended dome is a reasonable and novel type of long-span hybrid spatial structures based upon single-layer spherical lattice shell and tensegrity system. Based upon the structural force-bearing characteristics, the combined finite element model of beam elements, truss elements and cable elements is set up. A method taking the maximum displacement on nodes under earthquake acceleration of each level as dynamic response representative parameter is proposed to study the dynamic stable ultimate capacity of suspended dome by application of the incremental dynamic analysis in combination with B-R kinetic criterion. Furthermore, considering suspended dome has the clear advantage over Single-Layer Spherical Lattice Shell for a structure with a long span and a small ratio of rise to span, the influences of factors such as structural parameters, geometric parameters, and different earthquake input are investigated on dynamic stability for a kiewitt-type suspended dome with a long span and a small ratio of rise to span. Finally of suspended dome some conclusions are obtained such as the initial defects can clearly reduce dynamic stable ultimate capacity, and since the rise-span ratio, pre-stressing level and cross section area are not monotonous as variety to the structural dynamic stability, they should be optimized to enhance or improve the structural dynamic stability, which can be rules for engineering design.
875
Authors: Ze Chao Zhang, Hong Bo Liu, Xiao Dun Wang, Xiang Yu Yan, Jing Hai Yu, Zhi Hua Chen
Abstract: The upper part of Caofeidian coal storage was approximately hemispherical aluminum shell, covered with aluminum alloys plate. The capsule was made of aluminum alloys material, and its span was 125 meters. In the design, according to TEMCOR joint, we used the finite element software MIDAS to build the accurate geometry models and calculation models of aluminum alloys single layer latticed dome structures. By the combination of constant loads, live loads, snow load, wind load, temperature effect and other working conditions, we summarized the consumption of aluminum of the structures, and studied the structural internal force, structural deformation and structural stiffness. In addition, the X and Y two different direction seismic dynamic load was applied to the structure. The structural seismic performance under two kinds of modes were studied through the structure mode analysis of the vibration frequency. The vierendeel dome and single layer dome were controlled by the stability. ANSYS three-dimensional frame element model were set up, and the eigenvalue buckling analysis was carried out. By the geometrical nonlinear finite element method, combining with initial imperfections and material nonlinear, we found out the stability coefficient and the weak parts of the structure.
396