Electron Spectroscopic Studies of Homogenous (GaMn)As Layers


Article Preview

By incorporating magnetism into semiconductors, it may possibly be viable to enhance the functionality of materials. An exceptionally important material in this context is GaAs, which can be doped with Mn atoms. (GaMn)As has fascinated research community as a promising candidate for spintronic application. It is quite appealing due to both its compatibility with existing III-V technology and great progress in improving its magnetic properties. Being fabricated by low temperature molecular beam epitaxy (LT-MBE), due to thermal instability at elevated temperatures, the material contains a high density of various defects compensating Mn acceptors. It is a well-established fact that the ferromagnetic state of (GaMn)As can be stabilized via post growth annealing. Nevertheless, in general, the annealed (GaMn)As layers do not remain useful for further epitaxial overgrowth that might be included in multilayer structure. We present a summary of our investigations regarding the synchrotron-based characterization of (GaMn)As layers grown via molecular beam epitaxy carried out at the Swedish National Facility of Synchrotron Radiation-the MAX-lab aiming at the reduction of the density of Mn interstitial and increase in the content of Mn.



Advanced Materials Research (Volumes 463-464)

Edited by:

Wu Fan




I. Ulfat et al., "Electron Spectroscopic Studies of Homogenous (GaMn)As Layers", Advanced Materials Research, Vols. 463-464, pp. 380-384, 2012

Online since:

February 2012




[1] H. Munekata, H. Ohno, S. von Molnar, A. Segmüller, L.L. Chang, and L. Esaki, Phys. Rev. Letters 63, 1849 (1989).

DOI: https://doi.org/10.1103/physrevlett.63.1849

[2] L. Chen, S. Yan, P. F. Xu, J. Lu, W. Z. Wang, J. J. Deng, X. Qian, Y. Ji, and J. H. Zhao. Appl. Phys. Lett. 95, 182505, (2009).

[3] See e. g. S. Sanvito, G. Theurich, and N.A. Hill, J. Supercond. 15, 85 (2002), P. Kacman, Semicond. Sci. Technol. 16 R25 (2001).

[4] K.C. Ku, S.J. Potashnik, R.F. Wang, S.H. Chun, P. Schiffer, N. Samarth, M.J. Seong, A. Mascarenhas, E. Johnston-Halperin, R.C. Myers, A.C. Gossard, och D.D. Awschalom, Appl. Phys. Letters 82, 2302 (2003).

DOI: https://doi.org/10.1063/1.1564285

[5] K.M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J.K. Furdyna, Phys. Rev B 65, 201303 (2002).

[6] K.W. Edmonds, P. Boguslawski, K.Y. Wang, R.P. Campion, S.N. Novikov, N.R.S. Farley, B.L. Gallagher, C.T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J. Bernholc, Phys. Rev Letters 92, 037201 (2004).

DOI: https://doi.org/10.1103/physrevlett.92.037201

[7] M. Adell, J. Kanski, L. Ilver, J. Sadowski, V. Stanciu, and P. Svedlindh, Phys. Rev. Letters 94, 139701 (2005).

DOI: https://doi.org/10.1103/physrevlett.94.139701

[8] http: /www. maxlab. lu. se.

[9] M. Adell, V. Stanciu, J. Kanski, L. Ilver, J. Sadowski, J.Z. Domagala, P. Svedlindh, F. Terki, C. Hernandez, and S. Charar, Appl. Phys. Letters 86, 112501 (2005).

DOI: https://doi.org/10.1063/1.1875746

[10] I. Ulfat, J. Adell, L. Ilver, J. Sadowski and J. Kanski, Surface Sci., 604 (2010).

DOI: https://doi.org/10.1016/j.susc.2010.07.022

[11] J. Adell I. Ulfat, L. Ilver, J. Sadowski K. Karlsson and J. Kanski, J. Phys.: Condens. Matter 23 (2011).

[12] J. Adell I. Ulfat, L. Ilver, J. Sadowski and J. Kanski, Phys. Rev. B 80, 075204 (2009).

Fetching data from Crossref.
This may take some time to load.