Lattice Boltzmann Simulation on Solid Oxide Fuel Cell Performance


Article Preview

Based on models of a porous electrode, a more accurate lattice Boltzmann model for simulating the performance of a solid oxide fuel cell (SOFC) is proposed. Results show good agreement between simulated and measured data. The accuracy of concentration over potential prediction is crucial for low reactant concentrations. The addition of a small amount of air to the fuel yields fully stable performance without measurable carbon deposits detected on the catalyst layer or the fuel cell. Cell performance increases with the temperature. As a first test of the model, a benchmark problem regarding the performance of an internal reforming solid oxide fuel cell (IR-SOFC) is investigated. When the catalyst activity decreases, the rate of methane conversion decreases near the reactor



Advanced Materials Research (Volumes 472-475)

Edited by:

Wenzhe Chen, Xipeng Xu, Pinqiang Dai, Yonglu Chen and Zhengyi Jiang




W. J. Feng et al., "Lattice Boltzmann Simulation on Solid Oxide Fuel Cell Performance", Advanced Materials Research, Vols. 472-475, pp. 260-273, 2012

Online since:

February 2012




[1] H. Yakabe, M. Hishinuma, and I. Yasuda, J. Electrochem. Soc. 147(2000)4071.

[2] W.G. Bessler, et al.,J. Electrochem. Soc. 153(2006)A1492.

[3] H. Sumi, et al.,J. Electrochem. Soc. 157(2010)B1118.

[4] X.D. Zhou, et al.,J. Electrochem. Soc. 157(2010)B1019.

[5] J.R. Ferguson J.M. Fiard,R. Herbin,J. Power Sources 109(1996)109.

[6] P.W. Li, K. Suzuki,J. Electrochem. Soc. 151(2004)A548.

[7] H. Yakabez and I. Yasuda, J. Electrochem. Soc. 150(2003)A35.

[8] P.W. Li,M.K. Chyu,J. Power Sources 124(2003)487.

[9] M.M. Hussain,X. Li,I. Dincer,J. Power Sources 161(2006)1012.

[10] Y.T. Qi,B.H. Huang K.T. Chuang,J. Power Sources 150(2005)32.

[11] F.A. Coutelieris, S.L. Douvartzides P.E. Tsiakaras, Chem. Eng. Sci. 60(2005)4423.

[12] A.U. Modak M.T. Lusk, Solid State Ionics 176(2005)2181.

[13] B. Kenney,K. Karanz, J. Electrochem. Soc. 153(2006)A1172.

[14] A. Weber, et al.,J. Power Sources 127(2004)273.

[15] A. Weber, et al., Solid State Ionics 152-153(2004)543.

[16] U. Stimming, et al.,J. Power Sources 71(1996)302.

[17] G. Di Giuseppe, et al.,J. Power Sources 125(2004)183.

[18] P. Asinari, M. Coppo, Engineering and Technology (Rochester, NY, 2004) p.291–299.

[19] P. Asinari,M. Calì Quaglia M.R. von Spakovsky B.V. Kasula, the 1st European Fuel Cell Technology and Applications Conference (Rome, 2005).

[20] Y.H. Qian,D. d'Humières,P. Lallemand, Europhys. Lett. 17(1992)479.

[21] S.Y. Chen, et al., Phys. Rev. Lett. 67(1991)3776.

[22] P. Asinari,M. Coppo M.R. von Spakovsky B.V. Kasula, Numerical simulations of gaseous mixture flow in porous electrodes for PEM fuel cells by the lattice Boltzmann method, in Proceedings of the 3rd International Conference on Fuel Cell Science, Engineering and Technology(Ypsilanti, MI, 2005. ).


[23] Y.S. Xu,Y. Liu X.Z. Xu,G.X. Huang,J. Electrochem . Soc. 153(2006)A607.

[24] C. Pan L.S. Luo C.T. Miller, Comput. Fluids 35(2006)898.

[25] L.T. Lim, D. Chadwick,L. Kershenbaum, Ind. Eng. Chem. Res. 44(2005)9609.

[26] E.A. Mason A.P. Malinauskas, Transport in Porous Media: The Dusty Gas Model(Elsevier, New York, 1983).

[27] R. Krishna J.A. Wesselingh, Chem. Eng. Sci. 52(1997)861.

[28] R. Suwanwarangkul, E. Croiset M.W. Fowler P.L. Douglas,E. Entchev M.A. Douglas,J. Power Sources 122(2003)9.

[29] Z.L. Guo T.S. Zhao, Phys. Rev. E 66(2002)036304.

[30] Q. Kang,D. Zhang S.Y. Chen,X. He, Phys. Rev. E 65(2002)036318.

[31] S.P. Dawson,S. Chen G.D. Doolen,J. Chem. Phys. 98(1992)1514.

[32] R. Kumar et al., Int.J. Numer. Methods Fluids 31(1999)801.

[33] Y.S. Xu,Y. Liu G.X. Huang, Chin. Phys. Lett. 21(2004)2454.

[34] P. Nithiarasu K.N. Seetharamu,T. Sundararajan, Int.J. Heat Mass Transfer 40(1997)3955.

[35] S. Ergun, Chem. Eng. Prog. 48(1952)89.

[36] K. Vafai,J. Fluid Mech. 147(1984)233.

[37] J. Bear, Dynamics of Fluids in Porous Media(Dover, New York, 1972).

[38] A. Cancelliere et al., Phys. Fluids A 2(1990)(2085).

[39] E.G. Flekkøy, S.R. Pride, Phys. Rev. E 60(1999)4130.

[40] X.W. Shan H.D. Chen, Phys. Rev. E 47(1993)1845.

[41] B. Todd J.B. Young,J. Power Sources 110(2002)186.

[42] A.K. Gunstensen et al., Phys. Rev. A 43(1991)4320.

[43] S. Chen G.D. Doolen, Annu. Rev. Fluid Mech. 30(1998)329.

[44] Q.J. Kang D.X. Zhang S.Y. Chen, Phys. Rev. E 66(2002)6307.

[45] Z.L. Guo T.S. Zhao, Phys. Rev. E 66(2002)6304.

[46] C.X. Pan L.S. Luo C.T. Miller, Comput. Fluids 35(2006)898.

[47] Z. Guo T.S. Zhao, Numer. Heat Transfer B 47(2004)1.

[48] H. Yakabe,M. Hishinuma,M. Uratani,Y. Matsuzaki,I. Yasuda,J. Power Sources 86(2000)423.

[49] S.J. Mojzsis et al., Nature 384(1996)55.

[50] N. Nakagawa,H. Sagara,K. Kato,J. Power Sources 92(2001)88.