Microstructure Study on Optimization of High Strength Fly Ash Based Geopolymer

Abstract:

Article Preview

The compressive strength and microstructural characteristics of fly ash based geopolymer with alkaline activator solution were investigated. The sodium hydroxide and sodium silicate were mixed together to form an alkaline activator. Three parameters including NaOH molarity, mix design (fly ash/alkaline activator ratio and Na2SiO3/NaOH ratio), and curing temperature were examined. The maximum strength of 71 MPa was obtained when the NaOH solution of 12M, fly ash/alkaline activator of 2.0, Na2SiO3/NaOH of 2.5 and curing temperature of 60°C were used at 7th days of testing. The results of SEM indicated that for geopolymer with highest strength, the structure was dense matrix and contains less unreacted fly ash with alkaline activator

Info:

Periodical:

Advanced Materials Research (Volumes 476-478)

Edited by:

Wenzhe Chen, Qiang Li, Yonglu Chen, Pinqiang Dai and Zhengyi Jiang

Pages:

2173-2180

Citation:

M. M. Al Bakri Abdullah et al., "Microstructure Study on Optimization of High Strength Fly Ash Based Geopolymer", Advanced Materials Research, Vols. 476-478, pp. 2173-2180, 2012

Online since:

February 2012

Export:

Price:

$41.00

[1] A. Palomo, A. Macias, M. T. Blanco and F. Puertas: Proceedings of the 9th International Congress on the Chem. of Cem., (1992), p.505.

[2] S. Hu, H. Wang, G. Zhang and Q. Ding: Cem. Concr. Compos. Vol. 30(3) (2008), p.239.

[3] M. Steveson and K. Sagoe-Crentsil: J. Mater. Sci. Vol. 40 (2005), p.4247.

[4] M. M. A. Abdullah, H. Kamarudin, H. Mohammed, I. Khairul Nizar, A. R. Rafiza, and Y. Zarina: Advance Mater. Res. Vols. 328-330 (2011), p.1475.

[5] B. V. Rangan, in: Low-Calcium, Fly-Ash-Based Geopolymer Concrete, Concrete Construction Engineering Handbook, Taylor and Francis Group, LLC (2008), pp.1-19.

DOI: https://doi.org/10.1201/9781420007657.ch26

[6] A. Buchwald, and M. Schulz: Cem. Conc. Res. Vol. 35(5) (2005), p.968.

[7] S. E. Wallah: Modern Appl. Sci. Vol. 3(12) (2009), p.12.

[8] A. Palomo, M. W. Grutzek, and M. T. Blanco: Cem. Conc. Res. Vol. 29(8) (1999), p.1323.

[9] J. G. S. Van Jaarsveld, J. S. J. Van Deventer, and G. C. C. Lukey: Chemical Eng. J. Vol. 4001 (2002), pp.1-11.

[10] B. V. Rangan, D. Hardjito, S. E. Wallah, and D. M. J. Sumajouw, in: Studies on fly ash-based geopolymer concrete, Curtin University of Technology, Perth, Australia, p.133.

DOI: https://doi.org/10.1007/s10853-006-0523-8

[11] J. C. Swanepoel, C. A. Strydom: Appl. Geochemistry, Vol. 17(8) (2002), p.1143.

[12] D. Hardjito, C. Chung Cheak, and C. Ho Lee Ing: Modern Appl. Sci. Vol. 2(4) (2008), p.3.

[13] V. F. F. Barbosa, K. J. D. Mackenzie, and C. Thaumaturgo, in: Synthesis and Characterisation of Sodium Polysialate Inorganic Polymer Based on Alumina and Silica, Geopolymer International Conference, France (1999).

[14] P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon: Cem. Conc. Compos. Vol. 29 (2007), p.224.

[15] A. Fernandez-Jimenez, A. Palomo, and M. Criado: Cem. Conc. Res. Vol. 35 (2005), p.1204.

[16] P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon: Cem. Concr. Compos. Vol. 29 (2007), p.224.