Effect of Hydrothermal Temperatures on the Structure of Bi0.5Na0.5TiO3 Nanomaterials


Article Preview

Bismuth sodium titanate (Bi0.5Na0.5TiO3 , abbreviated as BNT) nanoparticles were synthesized by hydrothermal process at various temperatures for 10 h. The results showed that all the as-prepared nanopowders are well crystallized and the crystallite size increased with the increase of hydrothermal temperatures under the reaction conditions.



Advanced Materials Research (Volumes 482-484)

Edited by:

Wenzhe Chen, Xingjun Liu, Pinqiang Dai, Yonglu Chen and Zhengyi Jiang




X. L. Zhang et al., "Effect of Hydrothermal Temperatures on the Structure of Bi0.5Na0.5TiO3 Nanomaterials", Advanced Materials Research, Vols. 482-484, pp. 2573-2576, 2012

Online since:

February 2012




[1] H.Y. Tian, D.Y. Wang, D.M. Lin, J.T. Zeng, K.W. Kwok, H.L.W. Chan, Diffusion phase transition and dielectric characteristics of Bi0. 5Na0. 5TiO3-Ba(Hf, Ti)O3 lead-free ceramics, Solid State Comm. 142 (2007) 10-14.

DOI: https://doi.org/10.1016/j.ssc.2007.01.043

[2] A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, H. Alexandru, C. Berbecaru, D. Ghetu, G. Stoica, BNT ceramics synthesis and characterization, Mater. Sci. Eng. B, 109 (2004) 183-187.

DOI: https://doi.org/10.1016/j.mseb.2003.10.116

[3] Y.F. Qu, D. Shan, J.J. Song, Effect of A-site substitution on crystal component and dielectric properties in Bi0. 5Na0. 5TiO3 ceramics, Mater. Sci. Eng. B, 121 (2005) 148-151.

DOI: https://doi.org/10.1016/j.mseb.2005.03.023

[4] T. Takenaka, H. Nagata, Present status of non-lead-based piezoelectric ceramics, Key Eng. Mater. 157-158 (1999) 57-64.

DOI: https://doi.org/10.4028/www.scientific.net/kem.157-158.57

[5] A.N. Soukhojak, H. Wang, G.W. Farrey, Y.M. Chiang, Superlattice in single crystal barium-doped sodium bismuth titanate, J. Phys. Chem. Solid. 61 (2000) 301-304.

DOI: https://doi.org/10.1016/s0022-3697(99)00297-8

[6] Y.F. Liu, Y.N. Lu, S.H. Dai, Hydrothermal synthesis of monosized Bi0. 5Na0. 5TiO3 spherical particles under low alkaline solution concentration, J. Alloys Compd. 484 (2009) 801-805.

DOI: https://doi.org/10.1016/j.jallcom.2009.05.033

[7] J. Q Qi, L. Sun, P. Du, L.T. Li, Slurry Synthesis of Bismuth Sodium Titanate with a Transient Aurivillius-Type Structure, J. Am. Ceram. Soc. 93 (2010) 1044-1048.

DOI: https://doi.org/10.1111/j.1551-2916.2009.03488.x

[8] J.G. Hou, Y.F. Qu, W.B. Ma, D. Shan, Synthesis and piezoelectric properties of (Na0. 5Bi0. 5)0. 94Ba0. 06TiO3 ceramics prepared by sol-gel auto-combustion method, J. Mater. Sci. 42 (2007) 6787-6791.

DOI: https://doi.org/10.1007/s10853-006-1429-1

[9] M. L Zhao, C.L. Wang, W.L. Zhong, J.F. Wang, Z.F. Li, Grain-size effect on the dielectric properties of Bi0. 5Na0. 5TiO3, Chin. Phys. Lett. 20 (2003) 290-292.

[10] A.Q. Jiang, G.H. Li, L.D. Zhang, Absorption red shift and structural phase transition in nanocrystalline Bi4Ti3O12-Na2TiO3 solid solution, Solid State Commun. 104 (1997) 709-711.

DOI: https://doi.org/10.1016/s0038-1098(97)10006-0

[11] M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future, J. Mater. Sci. 43 (2008) 2085-2103.

DOI: https://doi.org/10.1007/s10853-007-1853-x

[12] M.M. Lencka, M. Oledzka, R.E. Riman, Hydrothermal synthesis of sodium and potassium bismuth titanates, Chem. Mater. 12 (2000) 1323-1330.

DOI: https://doi.org/10.1021/cm9906654

[13] P. Pookmanee, S. Phanichphant, Low temperature hydrothermal synthesis of bismuth sodium titanate nanopowders, Int. J. Nanosci. 4 (2005) 637-641.

DOI: https://doi.org/10.1142/s0219581x05003619

[14] P. Pookmanee, G. Rujijanagul, S. Ananta, R.B. Heimann, S. Phanichphant, Effect of sintering temperature on microstructure of hydrothermally prepared bismuth sodium titanate ceramics, J. Europ. Ceram. Soc. 24 (2004) 517-520.

DOI: https://doi.org/10.1016/s0955-2219(03)00197-3

[15] X.Z. Jing, Y.X. Li, Q.G. Yin, Hydrothermal synthesis of. Na0. 5Bi0. 5TiO3 fine powders, Mater. Sci. Eng. B, 99 (2003) 506-510.