Dynamical Analysis and Chaos Control of a Driven System with One Cubic Nonlinearity: Numerical and Experimental Investigations


Article Preview

The dynamics of a non-autonomous chaotic system with one cubic nonlinearity is studied through numerical and experimental investigations in this paper. A method for calculating Lyapunov exponents (LEs), Lyapunov dimension (LD) from time series is presented. Furthermore, some complex dynamic behaviors such as periodic, quasi-periodic motion and chaos which occurred in the system are analyzed, and a route to chaos, phase portraits, Poincare sections, bifurcation diagrams are observed. Finally, a first order differential controller for the non-autonomous system is designed. Also some dynamics such as Poincare sections, bifurcation diagrams for specific control parameter values of the controlled system are showed using numerical and experimental simulations.



Edited by:

Guohui Yang




Z. Wang et al., "Dynamical Analysis and Chaos Control of a Driven System with One Cubic Nonlinearity: Numerical and Experimental Investigations", Advanced Materials Research, Vol. 486, pp. 204-210, 2012

Online since:

March 2012




[1] E. N. Lorenz: Journal of the Atmospheric Sciences, Vol. 20 (1963), pp.130-141.

[2] G. Contopoulos: Order and Chaos in Dynamical Astronomy (Springer, USA 2004).

[3] Z. Wang, Y. T. Wu, Y. X. Li and Y. J. Zou, Adaptive Backstepping Control of a Nonlinear Electromechanical System with Unknown Parameters, Proceedings of the 4th International Conference on Computer Science and Education, Nanning, China, July 25-28, (2009).

DOI: https://doi.org/10.1109/iccse.2009.5228394

[4] G. Chen and T. Ueta: Chaos in Circuits and Systems (World Scientific, Singapore 2002).

[5] J. R. Piper and J. C. Sprott: IEEE Transactions on circuits and systems, Vol. 57 (2010), pp.730-734.

[6] S. Mandal and S. Banerjee: IEEE Trans. Circuits and Systems, Vol. 51 (2004), pp.1708-1722.

[7] P. W. Mao, X. L. Lin and Z. Wang: Communications Technology, Vol. 43 (2010), pp.131-133.

[8] H. Adeli, S. G. Dastidar and N. Dadmehr: IEEE Trans Biomedical Engineering, Vol. 54 (2007), p.205–211.

[9] J. C. Sprott: Physical Review E, Vol. 50 (1994), pp.647-650.

[10] H. P. W. Gottlieb: American Journal of Physics, Vol. 64 (1996), pp.525-525.

[11] J. C. Sprott: American Journal of Physics, vol. 68 (2000), pp.758-763.

[12] G. R. Chen and T. Ueta: International Journal of Bifurcation and Chaos, Vol. 9 (1999), pp.1465-1466.

[13] Z. Wang: Nonlinear Dynamics, vol. 60 (2010), pp.369-373.

[14] Z. Wang: Analysis in Theory and Applications, Vol. 23 (2007), p.343~353.

[15] K. E. Chlouverakis and J.C. Sprott: Chaos, Solitons and Fractals, Vol. 28 (2006), pp.739-746.

DOI: https://doi.org/10.1016/j.chaos.2005.08.019

[16] G. J. Peng, and Y. L. Jiang: Physic A, Vol. 389 (2010), pp.4140-4148.

[17] J. C. Sprott: American Journal of Physics, Vol. 76 (2008), pp.474-480.

[18] R. Lewin. Complexity: Life on the Edge of Chaos (Macmillan, USA 1992).

[19] M. Waldrop. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, USA 1992).

[20] R. Yamapi and S. Bowong: Communications in Nonlinear Science and Numerical Simulation, Vol. 11 (2006), pp.355-375.

[21] R. Yamapi: Physica A, Vol. 366 (2006), pp.187-196.

[22] H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi and P. Woafo: Chaos, Solitons and Fractals, Vol. 32 (2007), pp.862-882.

DOI: https://doi.org/10.1016/j.chaos.2005.11.063

[23] R. Yamapi and J. B. Chabi Orou: Journal of Sound and Vibration, Vol. 259 (2003), p.1253–1264.

DOI: https://doi.org/10.1006/jsvi.2002.5289

[24] H.G. Enjieu Kadji and R. Yamapi: Physica A, 370 (2006), p.316–328.

[25] R. Yamapi, J. B. Chabi Orou and P. Woafo: Physica Scripta, Vol. 67 (2003), p.269–275.

DOI: https://doi.org/10.1238/physica.regular.067a00269

[26] J. C. Chedjou, J. P. Dada, C. Takenga, R. Anne, B. Nana and K. Kyamakya: Harmonic Oscillations, Routes to chaos and Synchronization In a Nonlinear Emitter-Receiver System, Proceedings of the 60th IEEE Vehicular Technology Conference, Los Angeles, USA, September 26-29 (2004).

DOI: https://doi.org/10.1109/vetecf.2004.1404861

[27] D. Marshall and J. C. Sprott: Chaos, Vol. 19 (2009), p.013124.

[28] R. Yamapi, B. R. Nana nbendjo and H. G. Enjieu kadji: International Journal of Bifurcation and Chaos, Vol. 17 (2007), p.1343–1354.

DOI: https://doi.org/10.1142/s0218127407017847

[29] J. C. Sprott: American Journal of Physics, Vol. 65 (1997), pp.537-543.

[30] Y. H. Lim and D. C. Hamill: Problems of computing Lyapunov exponents in power electronics, Proceeding of the international Symposium on Circuits and Systems, Orlando, USA May 30-June 2, (1999).

[31] A. Wolf, J. Swift, H. Swinney and J. Vastano: Physica D, Vol. 16 (1985), pp.285-317.

[32] Konstantinos E. Chlouverakisa and J.C. Sprottb: Physica D, Vol. 200 (2005), pp.156-164.

[33] Y. D. Chu, J. G. Zhang, X. F. Li, Y. X. Chang and G. W. Luo: Nonlinear Analysis: Real World Applications, Vol. 9 (2008), pp.1378-1393.

[34] E. Ott, C. Grebogi and J. A. Yorke: Physical Review Letters, Vol. 64 (1990), pp.1196-1199.

[35] G. Chen and X. Dong: International Journal of Bifurcation and Chaos, Vol. 2 (1992), p.407–411.

[36] K. Pyragas, V. Pyragas and H. Benner: Physical Review E, Vol. 70 (2004), pp.056222-056226.

[37] Liliana R.V. Castro, Julia Schittl and Rodolphe Fischmeister: Circulation Rescarch, Vol. 107 (2010), pp.1232-1240.

[38] W. Xue and Q. Zhong: Electric Machines and Control, Vol. 14 (2010), pp.47-51.