Dynamical Analysis and Chaos Control of a Driven System with One Cubic Nonlinearity: Numerical and Experimental Investigations

Abstract:

Article Preview

The dynamics of a non-autonomous chaotic system with one cubic nonlinearity is studied through numerical and experimental investigations in this paper. A method for calculating Lyapunov exponents (LEs), Lyapunov dimension (LD) from time series is presented. Furthermore, some complex dynamic behaviors such as periodic, quasi-periodic motion and chaos which occurred in the system are analyzed, and a route to chaos, phase portraits, Poincare sections, bifurcation diagrams are observed. Finally, a first order differential controller for the non-autonomous system is designed. Also some dynamics such as Poincare sections, bifurcation diagrams for specific control parameter values of the controlled system are showed using numerical and experimental simulations.

Info:

Periodical:

Edited by:

Guohui Yang

Pages:

204-210

Citation:

Z. Wang et al., "Dynamical Analysis and Chaos Control of a Driven System with One Cubic Nonlinearity: Numerical and Experimental Investigations", Advanced Materials Research, Vol. 486, pp. 204-210, 2012

Online since:

March 2012

Export:

Price:

$41.00

[1] E. N. Lorenz: Journal of the Atmospheric Sciences, Vol. 20 (1963), pp.130-141.

[2] G. Contopoulos: Order and Chaos in Dynamical Astronomy (Springer, USA 2004).

[3] Z. Wang, Y. T. Wu, Y. X. Li and Y. J. Zou, Adaptive Backstepping Control of a Nonlinear Electromechanical System with Unknown Parameters, Proceedings of the 4th International Conference on Computer Science and Education, Nanning, China, July 25-28, (2009).

DOI: https://doi.org/10.1109/iccse.2009.5228394

[4] G. Chen and T. Ueta: Chaos in Circuits and Systems (World Scientific, Singapore 2002).

[5] J. R. Piper and J. C. Sprott: IEEE Transactions on circuits and systems, Vol. 57 (2010), pp.730-734.

[6] S. Mandal and S. Banerjee: IEEE Trans. Circuits and Systems, Vol. 51 (2004), pp.1708-1722.

[7] P. W. Mao, X. L. Lin and Z. Wang: Communications Technology, Vol. 43 (2010), pp.131-133.

[8] H. Adeli, S. G. Dastidar and N. Dadmehr: IEEE Trans Biomedical Engineering, Vol. 54 (2007), p.205–211.

[9] J. C. Sprott: Physical Review E, Vol. 50 (1994), pp.647-650.

[10] H. P. W. Gottlieb: American Journal of Physics, Vol. 64 (1996), pp.525-525.

[11] J. C. Sprott: American Journal of Physics, vol. 68 (2000), pp.758-763.

[12] G. R. Chen and T. Ueta: International Journal of Bifurcation and Chaos, Vol. 9 (1999), pp.1465-1466.

[13] Z. Wang: Nonlinear Dynamics, vol. 60 (2010), pp.369-373.

[14] Z. Wang: Analysis in Theory and Applications, Vol. 23 (2007), p.343~353.

[15] K. E. Chlouverakis and J.C. Sprott: Chaos, Solitons and Fractals, Vol. 28 (2006), pp.739-746.

DOI: https://doi.org/10.1016/j.chaos.2005.08.019

[16] G. J. Peng, and Y. L. Jiang: Physic A, Vol. 389 (2010), pp.4140-4148.

[17] J. C. Sprott: American Journal of Physics, Vol. 76 (2008), pp.474-480.

[18] R. Lewin. Complexity: Life on the Edge of Chaos (Macmillan, USA 1992).

[19] M. Waldrop. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, USA 1992).

[20] R. Yamapi and S. Bowong: Communications in Nonlinear Science and Numerical Simulation, Vol. 11 (2006), pp.355-375.

[21] R. Yamapi: Physica A, Vol. 366 (2006), pp.187-196.

[22] H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi and P. Woafo: Chaos, Solitons and Fractals, Vol. 32 (2007), pp.862-882.

DOI: https://doi.org/10.1016/j.chaos.2005.11.063

[23] R. Yamapi and J. B. Chabi Orou: Journal of Sound and Vibration, Vol. 259 (2003), p.1253–1264.

DOI: https://doi.org/10.1006/jsvi.2002.5289

[24] H.G. Enjieu Kadji and R. Yamapi: Physica A, 370 (2006), p.316–328.

[25] R. Yamapi, J. B. Chabi Orou and P. Woafo: Physica Scripta, Vol. 67 (2003), p.269–275.

DOI: https://doi.org/10.1238/physica.regular.067a00269

[26] J. C. Chedjou, J. P. Dada, C. Takenga, R. Anne, B. Nana and K. Kyamakya: Harmonic Oscillations, Routes to chaos and Synchronization In a Nonlinear Emitter-Receiver System, Proceedings of the 60th IEEE Vehicular Technology Conference, Los Angeles, USA, September 26-29 (2004).

DOI: https://doi.org/10.1109/vetecf.2004.1404861

[27] D. Marshall and J. C. Sprott: Chaos, Vol. 19 (2009), p.013124.

[28] R. Yamapi, B. R. Nana nbendjo and H. G. Enjieu kadji: International Journal of Bifurcation and Chaos, Vol. 17 (2007), p.1343–1354.

DOI: https://doi.org/10.1142/s0218127407017847

[29] J. C. Sprott: American Journal of Physics, Vol. 65 (1997), pp.537-543.

[30] Y. H. Lim and D. C. Hamill: Problems of computing Lyapunov exponents in power electronics, Proceeding of the international Symposium on Circuits and Systems, Orlando, USA May 30-June 2, (1999).

[31] A. Wolf, J. Swift, H. Swinney and J. Vastano: Physica D, Vol. 16 (1985), pp.285-317.

[32] Konstantinos E. Chlouverakisa and J.C. Sprottb: Physica D, Vol. 200 (2005), pp.156-164.

[33] Y. D. Chu, J. G. Zhang, X. F. Li, Y. X. Chang and G. W. Luo: Nonlinear Analysis: Real World Applications, Vol. 9 (2008), pp.1378-1393.

[34] E. Ott, C. Grebogi and J. A. Yorke: Physical Review Letters, Vol. 64 (1990), pp.1196-1199.

[35] G. Chen and X. Dong: International Journal of Bifurcation and Chaos, Vol. 2 (1992), p.407–411.

[36] K. Pyragas, V. Pyragas and H. Benner: Physical Review E, Vol. 70 (2004), pp.056222-056226.

[37] Liliana R.V. Castro, Julia Schittl and Rodolphe Fischmeister: Circulation Rescarch, Vol. 107 (2010), pp.1232-1240.

[38] W. Xue and Q. Zhong: Electric Machines and Control, Vol. 14 (2010), pp.47-51.