Application of Laser Texturization to Increase the Depth of AA5083 Welds


Article Preview

The application of laser beam welding to aluminium alloys has some complications, mainly due to their high reflectivity, high thermal conductivity and low viscosity. In order to increase the laser absorption of aluminium alloys, some surface treatments has been applied in the literature, such as the application of dark coatings or sandblasting. However, these conventional superficial treatments have some drawbacks, such as the low weld penetration, the possibility to undergo magnesium evaporation and the impossibility to control and/or change the superficial properties of the treated samples. In the present contribution, laser texturization treatments have been performed with a fibber laser for the first time on aluminium alloys to increase their absorption and weld penetration. The texturised samples leaded to deeper bead welds than the reference sandblasted samples.



Edited by:

M. Marcos and J. Salguero




J.M. Sánchez-Amaya et al., "Application of Laser Texturization to Increase the Depth of AA5083 Welds", Advanced Materials Research, Vol. 498, pp. 37-42, 2012

Online since:

April 2012




[1] T.Y. Kuo and H.C. Lin: Mater. Sci. Eng A-Struct. Vol. 416 (2006), pp.281-289.

[2] J.M. Sánchez-Amaya, T. Delgado, J. J. De Damborenea, V. López, and F.J. Botana: Sci. Tecnol. Weld Joi. Vol. 14 (1) (2009), pp.78-86.

[3] J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira and F.J. Botana: Appl. Surf. Sci. Vol. 255 (2009) pp.9512-9521.

[4] W. W. Duley: Laser welding, Chapter, 4, John Wiley & Sons (1998).

[5] M.J. Tobar, I.M. Lamas, A. Yáñez, J.M. Sánchez-Amaya, Z. Boukha and F.J. Botana: Physics procedia. Vol. 5 (2) (2010) pp.299-308.


[6] L.A. Dobrzański and A. Drygała: J. Mater. Process. Tech. Vol. 191 (1-3) (2007) pp.228-231.

[7] Z. Xi, D. Yang, W. Dan, C. Jun, X. Li and D. Que: Renew. Energ. Vol. 29 (2004) pp.3101-2107.

[8] M. Spiegel, C. Gerhards, F. Huster, W. Jooss, P. Fath and E. Bucher: Sol. Energy Mater. Sol. Cells Vol. 74 (2002) p.175–182.

[9] H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno and S. Arimoto: Curr. Appl. Phys. Vol. 10 (2010) S210–S214.

[10] I.A. Palani, N.J. Vasa, M. Singaperumal and T. Okada, Proc. SPIE - The International Society for Optical Engineering, 2010, 7584, art. no. 758410.

[11] L.A. Dobrzański, A. Drygała, P. Panek, M. Lipińki and P. Zieba: Archives of Materials Science and Engineering, Vol. 38 (1) (2009) pp.5-11.

[12] C. Yu and V.K. Mathews: Appl. Phys. Lett. Vol. 60 (12) (1992) pp.1501-1503.

[13] C. Yu, G. S. Sandhu, V.K. Mathews and T.T. Doan, Proc. SPIE - The International Society for Optical Engineering 1991, 1598, 186-197.

[14] R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne and L. Roux: J. Optoelectron. Adv.M. Vol. 12 (3) (2010) pp.621-625.


[15] T. Sarnet, M. Halbwax, R. Torres, P. Delaporte, M. Sentis, S. Martinuzzi, V. Vervisch, F. Torregrosa, H. Etienne, L. Roux and S. Bastide. Proc. SPIE - The International Society for Optical Engineering, 2008, 6881, art. no. 688119.


[16] A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu and L. Li: Appl. Phys. A-Mater. Vol. 95 (2) (2009) pp.447-452.