Grinding Surface Creation Simulation Using Finite Element Method and Molecular Dynamics


Article Preview

This paper presents some research results of the application of finite element method and molecular dynamics in the simulation of grinding surface creation. The comparison of these two methods shows that both methods could illustrate the material removal phenomena and provide useful information of grinding mechanics, but they have different feasible application arranges depending on the level of size scales. The investigation demonstrated that rubbing hypothesis of grinding material removal mechanism is valid at all size level even down to nanometre level. Further investigation areas are identified in the paper.



Edited by:

Chuanzhen Huang, Hongtao Zhu, Jun Wang and Xiaoping Li






X. Chen et al., "Grinding Surface Creation Simulation Using Finite Element Method and Molecular Dynamics", Advanced Materials Research, Vol. 500, pp. 314-319, 2012

Online since:

April 2012




[1] Wu HY, Lee WB, Cheung CF, To S, Chen YP, J Mater Process Tech 167(2-3) (2005): 549-554.

[2] Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M, Annals of the CIRP 55(2) (2006): 667–696.

DOI: 10.1016/j.cirp.2006.10.003

[3] Mamalis AG, Kundrák J, Manolakos DE, Gyáni K, Markopoulos A, Int J Adv Manuf Tech 21(2003): 929-934.

[4] Moulik PN, Yang HTY, Chandrasekar S, Int J Mech Sci 43(2001): 831-851.

[5] Doman DA, Warkentin A, Bauer R, Int J Mach Tool Manu 49(2009): 109-116.

[6] Klocke F, 1st European conference on Grinding, Aechan 6-7 November (2003).

[7] Hahn RS, In Proceeding of the 3rd International Conference On Machine tool design and research, Birmingham, UK, (1962) pp: 129-154.

[8] Doman DA, Bauer R, Warkentin A, Proc. IMechE Part B: J. Eng. Manuf. 223(2009): 1519-1527.

[9] Takenaka N, Annals of the CIRP 13(1966): 183-190.

[10] Ram A, Danckert J, Faurholdt T, In Proceeding of 4th European LS-DYNA User's Conference, Ulm, Germany, (2003) pp: 21-34.

[11] Yao Y, Schlesinger M, Drake GWF, Can J Phys 82(2004): 679-699.

[12] Lambropoulos JC, Xu S, Fang T, Golini D, Appl Optics 35(28) (1996): 5704-5713.

[13] Ohbuchi Y, Obikawa T, JSME Int J C-Mech Sy 49(1) (2006): 114-120.

[14] Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt H-W, Sweeney K, J Mater Process Tech 120(2002) : 450-457.

[15] J. Belak and I. F. Stowers, Proc. of the American Society of Precision Eng., (1999), pp.76-79.

[16] J. Belak and I. F. Stowers, Fundamentals of Friction: Macroscopic and Microscopic, Singer, Pollock E 220, (1991) pp.1-10.

[17] R. Rentsch and I. Inasaki, Annals of the CIRP Vol. 43, No 1, 1994, pp.327-330.

[18] R. Komanduri, and L.M. Raff, Proceedings of the Institution of Mechanical Engineers Vol. 215 Part B, (2001) pp.1639-1672.

[19] A.O. Oluwajobi and X. Chen, Proceedings of the 16th International Conference on Automation and Computing, 2010, pp.130-135.

[20] A.O. Oluwajobi and X. Chen, International Journal of Abrasive Technology, Vol. 3, No. 4. 2010, pp.354-381.

[21] Q.X. Pei, C. Lu, F.Z. Fang and H. Wu, Comp. Mat. Sci., Vol. 37, 2006, pp.434-441.

[22] J. Tersoff, Physical Review B, Vol. 38 No 14, 1988, pp.9902-9905.

[23] S. J. Plimpton, J Comp Phys, Vol. 117, 1995, pp.1-19 and www. lammps. sandia. gov.

[24] Visual Molecular Dynamics (VMD), http: /www. ks. uiuc. edu/Research/vmd/ (Accessed in 2010).

In order to see related information, you need to Login.