Preparation and Characterization of Bagasse Ion Adsorbent


Article Preview

A low-cost adsorbent was prepared simply by phosphorylating bagasse. The materials were characterized by Fourier Transform Infrared (FT-IR). Batch adsorption studies were carried out for Cu (II) ions adsorption at different initial concentrations. The pseudo-first-order, pseudo-second-order and the intra-particle diffusion models were used to analyze the kinetic data. The results revealed that the pseudo-second-order model generated the best agreement with the experiment data with the correlation coefficients greater than 0.999 for the adsorption systems. The mechanism of the Cu (II) ions adsorption by the phosphorylated bagasse was also discussed. The FT-IR results showed that the bagasse adsorbent has many different functional groups and these functional groups are able to react with Cu (II) ions in aqueous solution.



Advanced Materials Research (Volumes 518-523)

Edited by:

Reza Iranpour, Ji Zhao, Aijie Wang, Fenglin Yang and Xinyong Li




Y. Jiang, "Preparation and Characterization of Bagasse Ion Adsorbent", Advanced Materials Research, Vols. 518-523, pp. 3167-3174, 2012

Online since:

May 2012





[1] H. Benaissa, B. Benguella: Environ Pollut Vol. 130 (2004), p.157.

[2] Z. Aksu, G. Donmez: Process Biochem Vol. 41(2006), p.860.

[3] M. Ajmal, A.H. Khan, and S. Ahmad: Water Res Vol. 32 (1998), p.3085.

[4] A. Özer, D. Özer: Process. Biochem Vol. 39 (2004), p.2183.

[5] Y.Y. Bin, A. Zhang, and S.S. Shukla: J. Hazard. Mater Vol. B 84 (2001), p.83.

[6] G. Crini: Prog Polym Sci Vol. 30 (2005), p.38.

[7] A. Özer, H.B. Pirincci: J. Hazard. Mater Vol. 137 (2006), p.849.

[8] Y. Bulut, Z. Baysal: J. Environ. Manage Vol. 78 (2006), p.107.

[9] C.F. Baes, R.E. Mesmer: New York, USA: Wiley. (1976).

[10] W.M. Clark, H.A. Lubs: J. Biol. Chem Vol. 25 (1916), p.479.

[11] Y.S. Ho, G. Mckay: Water Res Vol. 33 (1999), p.578.

[12] S. Lagergren, K. Sven. Vetenskapsakad. Hand Vol. 24 (1898), p.1.

[13] Y.S. Ho, G. Mckay: Water Res Vol. 34 (2000), p.735.

[14] X.Y. Yang, A.D. Bushra: J. Colloid Interface Sci Vol. 287 (2005), p.287.

[15] S. Saygideger, O. Gulnaz, E.S. Istifli, and N. Yucel: J. Hazard. Mater Vol. B126 (2005), p.96.

[16] X.Y. Yang, S.R. Otto, and A.D. Bushra: J. Chem. Eng Vol. 94 (2003), p.199.

[17] Y. Wang, B.Y. Gao, W.W. Yue, and Q.Y. Yue: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 308 (2007), p.1.

[18] S.V. Mohana, N.C. Raoa, and J. Karthikeyan, J. Hazard. Mater Vol. B90 (2002), p.189.

[19] F.C. Wu, R.L. Tseng, and R.S. Juang: Water Res Vol. 35 (2001), p.613.

[20] Q. Sun, L. Yan: Water Res Vol. 37 (2003), p.1535.

[21] G.C. Panda, S.K. Das, T.S. Bandopadhyay, and A.K. Guha: Colloids Surf. B Vol. 57(2007), p.135.

[22] M. Minamisawa, H. Minamisawa, S. Yoshida, and N. Takai, J. Agric. Food Chem Vol. 52 (2004), p.5606.

[23] D.M. Suflet, G.C. Chitanu, and V.I. Popa: React. Funct. Polym Vol. 66(2006), p.1240.

[24] S. Majumdar, B. Adhikari: Bull. Mater. Sci Vol. 28(2005), p.703.

[25] D.H. Ozsoy, H. Kumbur: J. Hazar. Mater Vol. 136(2006), p.911.