Double-Side Digital Display Devices Based on the Solid-State Electrochromic Effect of the Amorphous WO3 Thin Films

Abstract:

Article Preview

A double-side digital display device has been fabricated based on the solid-state electrochromic effect of amorphous WO3 thin film in this article. The device simply consists of a transparent anode, a transparent cathode, an amorphous WO3 thin film and a solid electrolyte. The transparent electric wiring has been achieved by the electrochemical corrosion of the designed region of ITO (indium tin oxide) film. The amorphous WO3 thin film as an electrochromic layer is prepared on the ITO film by thermal evaporation deposition. The complex of polyethylene and LiClO4 as a solid electrolyte is used in the devices. This double-side digital display can work well under the normal mobile phone battery of 3.7 V, which is compatible with the traditional driven circuit technology. Our results prove the potential application of the amorphous WO3 thin film on the double-side display devices.

Info:

Periodical:

Edited by:

Kexiang Wei and Yuhang Yang

Pages:

74-78

Citation:

J. Y. Luo et al., "Double-Side Digital Display Devices Based on the Solid-State Electrochromic Effect of the Amorphous WO3 Thin Films", Advanced Materials Research, Vol. 529, pp. 74-78, 2012

Online since:

June 2012

Export:

Price:

$38.00

[1] C. G. Granqvist: Sol. Energy Sol. Cells, Vol. 60 (2000), p.201.

[2] S. K. Deb: Sol. Energy Mater. Sol. Cells, Vol. 92(2008), p.245.

[3] H. J. Chen, N. S. Xu, S. Z. Deng, D. Y. Lu, Z. L. Li, J. Zhou and J. Chen: Nanotech., Vol. 18 (2007), p.205701.

[4] S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili and A. M. Al-Shukri: Sol. Energy Mater. Sol. Cells, Vol. 71 (2002), p.313.

[5] Y. P. He and Y. P. Zhao: J. Phys. Chem. C, Vol. 112 (2008), p.61.

[6] J. M. Wang, E. Khoo, P. S. Leeand J. Ma: J. Phys. Chem. C, Vol. 113 (2009), p.9655.

[7] U. Bach, D. Corr, D. Lupo, F. Pichot and M. Ryan: Adv. Mater., Vol. 14 (2002), p.845.

[8] M. Grätzel: Mater. Science, Vol. 409 (2001), p.575.

[9] I. D. Brotherston, D. D. K. Mudigonda, J. M. Osborn, J. Belk, J. Chen, D. C. Lovedat, J. L. Boehme, J. P. Ferraris and D. L. Meeker: Electrochimica Acta, Vol. 44 (1999), p.2993.

DOI: https://doi.org/10.1016/s0013-4686(99)00014-6

[10] M. Senthikumar, J. Mathiyarasu, J. Joseph, K. L. N. Phani and V. Yegnaraman: Mater. Chem. Phys., Vol. 108 (2008), p.403.

[11] H. Wang, C. Zhong, C. J. Jiang, X. Gu, J. Li and Y. M. Jiang: Acta Phys. Chem. Sin., Vol. 25 (2009), p.835.

[12] J. Y. Luo, S. Z. Deng, Y. T. Tao, F. L. Zhao, L. F. Zhu, L. Gong, J. Chen and N. S. Xu: J. Phys. Chem. C, Vol. 113 (2009), p.15877.

[13] A. Subrahmanyam and A. Karuppasamy: Sol. Energy Mater. Sol. Cells., Vol. 91(2007), p.266.

[14] M. Deepa, D. P. Singh, S. M. Shivaprasad and S. A. Agnihotry: Current Appl. Phys., Vol. 7 (2007), p.220.

[15] E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura and K. Sasaki: Solid State Ionics, Vol. 165(2003), p.175.

[16] S. Gubbala, J. Thangala and M. K. Sunkara: Sol. Energy Mater. Sol. Cells, Vol. 91(2007), p.813.

Fetching data from Crossref.
This may take some time to load.