Effect of Process Parameters on Jet Length in Electrospraying of Thermoplastic Polymer


Article Preview

Electrospraying is inexpensive and an effective way to produce submicron range coating. Spray Angle and Jet Length are important characteristics that affect coating quality while polymer solution subjected to electrospraying. It was of interest to determine the effect of the process parameters on Jet Length. In this paper, an attempt was made to apply the electrospraying concept for coating textile surfaces. Series of experiments were carried out employing different settings of process parameters such as voltage, nozzle-collector distance and polymer concentration. Thermoplastic polyurethane dissolved in tetrahydrofluran was used as a solution. The results provide some insight into the effect of electrospraying process parameters on Jet Length



Advanced Materials Research (Volumes 535-537)

Edited by:

Chunxiang Cui, Yali Li and Zhihao Yuan




A. Jadhav et al., "Effect of Process Parameters on Jet Length in Electrospraying of Thermoplastic Polymer", Advanced Materials Research, Vols. 535-537, pp. 1146-1150, 2012

Online since:

June 2012




[1] T. G. I, Proc. Roy. Soc. London (A313), 448-453 (1969).

[2] Information on http: /www. newobjective. com/electrospray>. (2004).

[3] C. Renekar D.H., Nanometre Diameter Fibres Produced by Electrospinning., Nanotechnology, 7, 216-233 (1996).

[4] Y. M. H. Shin, M.M.; Brenner, M.P.; Rutiedge, G.C. , Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities, Polymer 42, 9955-9967 (2001).

[5] A. Jaworek, and A. T. Sobczyk, Electrospraying Route to Nanotechnology: An Overview, Journal of Electrostatics, 66(3-4), 197-219 (2008).

DOI: 10.1016/j.elstat.2007.10.001

[6] A. Jadhav, L Wang et al, Study of Electrospraying Characteristics of Polymer solution Coating on Textile substrate, Advanced Material Research, 332-334, P710(2011).

DOI: 10.4028/www.scientific.net/amr.332-334.710

[7] K. L. C. R. Chandrasekhar, Electrostatic Spray Assisted Vapour Deposition of Fluorine Doped Tin Oxide, Journal of Crystal Growth, 231(1-2), 215-221 (2001).

DOI: 10.1016/s0022-0248(01)01477-4

[8] T. Ciach, Microencapsulation of Drugs by Electro-Hydro-Dynamic Atomization, International Journal of Pharmaceutics, 324(1), 51-55 (2006).

DOI: 10.1016/j.ijpharm.2006.06.035

[9] M. S. W. Kuran, T. Listos, C. Debek and Z. Florjanczyk, New Route to Oligocarbonate Diols Suitable for the Synthesis of Polyurethaneelastomers, Polymers, 41, 8531 (2000).

DOI: 10.1016/s0032-3861(00)00197-x

[10] R. G. B. a. T. W. H. D.M. Crawford, Strain Effects on Thermal Transitions and Mechanical Properties of Thermoplastic Polyurethaneelastomers, Thermochim. Acta 323, 53 (1998).

[11] E. H. J. J.H. Hong, H.S. Lee, D.H. Baik, S.W. Seo and J.H. Youk, , Electrospinning of Polyurethane/Organically Modified Montmorillonite Nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 43(22), 3171-3177 (2005).

DOI: 10.1002/polb.20610

[12] I. K. K. a. T. M. S. Kidoaki, Structural Features and Mechanical Properties of in Situ-Bonded Meshes of Segmented Polyurethane Electrospun from Mixed Solvents, J. Biomed. Mater. Res. Part B: Appl. Biomater., 76 (2006).

DOI: 10.1002/jbm.b.30336

[13] M. I. T. Matsuda, H. Inoguchi, I.K. Kwon, K. Takamizawa and S. Kidoaki, Mechano-Active Scaffold Design of Small-Diameter Artificial Graft Made of Electrospun Segmented Polyurethane Fabrics, J. Biomed. Mater. Res. Part A 73, 125 (2005).

DOI: 10.1002/jbm.a.30260

[14] H. Y. K. D.I. Cha, K.H. Lee, Y.C. Jung, J.W. Cho and B.C. Chun, Electrospun Nonwovens of Shape-Memory Polyurethane Block Copolymers, J. Appl. Polym. Sci, 96, 460 (2005).

DOI: 10.1002/app.21467

Fetching data from Crossref.
This may take some time to load.