Giant Magnetoresistance in (Ni60Co30Fe10/Cu) Trilayer Growth by Opposed Target Magnetron Sputtering

Abstract:

Article Preview

The giant magnetoresistance thin film of (Ni60Co30Fe10/Cu) trilayer were grown onto Si (100) substrate by dc-opposed target magnetron sputtering (dc-OTMS) technique. The growth parameters are: temperature of 100 0C, applied voltage of 600 volt, flow rate of Ar gas of 100 sccm, and growth pressure of 5.2 x10-1 Torr. The effects of Cu layer thickness and NiCoFe layer thickness on giant magnetoresistance (GMR) property of (Ni60Co30Fe10/Cu) trilayer were studied. We have found that the giant magnetoresistance (GMR) ratio of the sample was varied depend on the non-magnetic (Cu) layer thickness. The variation of Cu layer thickness presents an oscillatory behavior of GMR ratio. This oscillation reflects the exchange coupling oscillations between ferromagnetic and antiferromagnetic states, which are caused by an oscillation in the sign of the interlayer exchange coupling between ferromagnetic layers. The GMR ratio is change with increasing of NiCoFe layer thickness and presents GMR ratio of 70.0 % at tNiCoFe = 62.5 nm.

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Edited by:

Chunxiang Cui, Yali Li and Zhihao Yuan

Pages:

1319-1322

DOI:

10.4028/www.scientific.net/AMR.535-537.1319

Citation:

Ramli et al., "Giant Magnetoresistance in (Ni60Co30Fe10/Cu) Trilayer Growth by Opposed Target Magnetron Sputtering", Advanced Materials Research, Vols. 535-537, pp. 1319-1322, 2012

Online since:

June 2012

Export:

Price:

$38.00

[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett 61 (1988) 2472-2475.

DOI: 10.1103/physrevlett.61.2472

[2] G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structure with antiferromagnetic interlayer exchange, Phys. Rev. B 39 (1989) 4828-4830.

DOI: 10.1103/physrevb.39.4828

[3] C. Tsang, R. Fontana, T. Lin, D. Heim, V. Speriosu, B. Gurney, M. Williams, Design, fabrication and testing of spin-valve read heads for high density recording, IEEE Trans. Magn 30 (1994) 3801-3806.

DOI: 10.1109/20.333909

[4] M. Djamal, Ramli, Development of sensors based on giant magnetoresistance material, Procedia Engineering 32 (2012) 60-68.

DOI: 10.1016/j.proeng.2012.01.1237

[5] Z. Wang, Z. Qian, X. Huang, Delta-sigma digital current sensor based on GMR, J. Phys.: Conf. Ser 263 (2011) 012009(1)- 012009(7).

DOI: 10.1088/1742-6596/263/1/012009

[6] C.P.O. Treutler, Magnetic sensors for automotive applications, Sens. Actuators A 91 (2001) 2-6.

[7] M. Koets, T. van der Wijk, J.T.W.M. van Eemeren, A. van Amerongen, M.W.J. Prins, Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor, Biosens. Bioelectron 24 (2009) 1893-1898.

DOI: 10.1016/j.bios.2008.09.023

[8] M. Djamal, Ramli, F. Haryanto, Khairurrijal, GMR Biosensor for Clinical Diagnostic, in: P.A. Serra (Ed. ), Biosensors for Health, Environment and Biosecurity, InTech Open Access Publisher , Rijeka, 2011, pp.149-164.

DOI: 10.5772/16365

[9] M. Djamal, Ramli, Yulkifli, Suprijadi, Khairurrijal, Biosensor based on giant magnetoresistance material, IJEHMC 1 (2010) 1-17.

DOI: 10.4018/978-1-4666-0909-9.ch008

[10] M. Naoe, S. Yamanaka, Y. Hoshi, Facing targets type of sputtering method for deposition of magnetic metal films at low temperature and high rate, IEEE Trans. Magn 16 (1980) 646-648.

DOI: 10.1109/tmag.1980.1060683

[11] D. Tripathy, A. O. Adeyeye, S. Shannigrahi, Effect of spacer layer thickness on magnetic and magnetotransport properties of Fe3O4/Cu/Ni80Fe20 spin valve structures, Phys. Rev. B 75 (2007), 012403-012406.

DOI: 10.1103/physrevb.75.012403

[12] E.Y. Tsymbal, D.G. Pettifor, Perspectives of Giant Magnetoresistance, in: H. Ehrenreich, F. Spaepen (Eds. ), Solid State Physics, Academic Press, London, 2001, pp.113-237.

DOI: 10.1016/s0081-1947(01)80019-9

[13] S. Tumanski, Thin Film Magnetoresistive Sensors, IoP Publishing Ltd, Bristol, (2001).

[14] R. Nakatani, T. Dei, T. Kobayashi, Y. Sugita, Giant magnetoresistance in Ni-Fe/Cu multilayers formed by ion beam sputtering, IEEE Trans. Magn, 28 (1992) 2668-2670.

DOI: 10.1109/20.179591

[15] B. Dieny, Giant magnetoresistance in spin-valve multilayers, J. Magn. Magn. Mater 136 (1994) 335-359.

In order to see related information, you need to Login.