Effects of Pneumatic Conveying Drying Conditions on Damaged Starch Content and Particle Size of Cassava Starch


Article Preview

This research aimed to investigate the effects of pneumatic conveying drying conditions on damaged starch content and particle size of cassava starch using response surface methodology. Three parameters of interest, i.e. drying air temperature (120, 160, and 200oC), drying air velocity (20, 30, and 40 m/s), and feed moisture content (40, 50, and 60% d.b.), were varied. Experimental results showed that damaged starch content and average particle size of cassava starch before drying were approximately 0.45% and 21.47µm, respectively. However, after drying, the values were altered to approximately 0.69 to 6.84% and 15.40 to 31.67 µm, respectively. The drying air temperature, drying air velocity, and feed moisture content significantly affected the changes. The results indicated that cassava starch granules were damaged and then agglomerated into large particle during pneumatic conveying drying depending on operation conditions.



Advanced Materials Research (Volumes 554-556)

Edited by:

Shuang Chen, Zhao-Tie Liu and Qingzhu Zeng




S. Aichayawanich et al., "Effects of Pneumatic Conveying Drying Conditions on Damaged Starch Content and Particle Size of Cassava Starch", Advanced Materials Research, Vols. 554-556, pp. 1433-1438, 2012

Online since:

July 2012




[1] P.I. Alvarez and R. Blasco: Pneumatic drying of meals: Drying Technol. Vol. 17(4&5) (1999), pp.791-808.

[2] K. Sriroth, K. Piyachomkwan, S. Wanlapatit and C. Oates ATES: Starch/Stärke. Vol. 52 (2000), pp.439-449.

DOI: https://doi.org/10.1002/1521-379x(200012)52:12<439::aid-star439>3.0.co;2-e

[3] S. Palzer: Chem. Eng. Sci. Vol. 60 (2005), pp.3959-3968.

[4] A.M. Cooley, D.E. Severson, D.E. Peightal and J.R. Wagner: Food Technol. Vol. 8 (1954), pp.263-269.

[5] C.R. Jones: Cereal Chem. Vol. 17(2) (1940), pp.74-90.

[6] R.F. Tester and W.R. Morrison: J. Cereal Sci. Vol. 20 (1994), pp.175-181.

[7] W.R. Morrison, R.F. Tester and M.J. Gidley: J. Cereal Sci. Vol. 19 (1994), pp.209-217.

[8] D. Liu, Q. Wu, H. Chen and P.R. Chang: J. Colloid Interf. Sci. Vol. 339(1) (2009), pp.117-124.

[9] G.E.P. Box and D.W. Behnken: Technometrics. Vol. 2 (1960), pp.455-475.

[10] Z. Li, N. Kobayashi, F. Watanabe and M. Hasatani: Drying Technol. Vol. 20(1) (2002), pp.223-233.

[11] AACC: America Association of Cereal Chemists (St. Paul, 2000).

[12] D.C. Montgomery, G.C. Runger and N.F. Hubele: Engineering statistics (Hoboken, NJ: John Wiley and Aons Inc., 2001).

[13] H. Kalman: Powder Technol. Vol. 104 (1999), pp.214-220.

[14] J. Adler, P.M. Baldwin and C.D. Melia: Starch/Stärke. Vol. 46(7) (1994), pp.252-256.

[15] S. Aichayawanich, M. Nopharatana, A. Nopharatana, W. Songkasiri: Carbohyd. Polym. Vol. 84 (2011), pp.292-298.

DOI: https://doi.org/10.1016/j.carbpol.2010.11.036

[16] H. Levine and L. Slade: in: Physical Chemistry of Foods, edited by G.S. Henry and W.H. Richard, Marcel Dekker, New York (1992).

[17] J. Perdomo, A. Cova, A.J. Sandoval, L. Garcia, E. Laredo and A.J. Muller: Carbohyd. Polym. Vol. 76 (2009), pp.305-313.

[18] R.F.M. Verdurmen, G. Van Houwelingen, M. Gunsing, M. Verschueren and J. Straatsma: Drying Technol. Vol. 24 (2006), pp.721-726.

DOI: https://doi.org/10.1080/07373930600684973