Synthesis of MoO3 Nanostructures by a Solution Method


Article Preview

Synthesis and characterization of microsheets, microrods, microflowers and microspheres of orthorhombic phase molybdenum oxide (MoO3) were reported. The reaction between ammonium molybdate and hydrochloric acid was used to prepare MoO3 microstructures and followed by annealing in air at 400oC for 2h. The combined techniques of X-ray powder diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy were used to investigate the effect of pH and additives on the as-prepared samples. Results indicated that they were of microsize. With alcohol as an additive, the sample was plate-like MoO3 at pH=2.5, and it was a mixture of MoO3 and MoO3•0.55H2O of irradiative corolla at pH=1. The sample obtained by hydrothermal was MoO3 flowers. Meanwhile, when silane coupling agent was introduced as the additive, the sample was MoO3 spheres.



Advanced Materials Research (Volumes 554-556)

Edited by:

Shuang Chen, Zhao-Tie Liu and Qingzhu Zeng




K. Du et al., "Synthesis of MoO3 Nanostructures by a Solution Method", Advanced Materials Research, Vols. 554-556, pp. 494-497, 2012

Online since:

July 2012




[1] S.C. Lyu, Y. Zhang, and C.J. Lee, Chem. Mater. Vol. 15 (2003), p.3294.

[2] H. Zhang, D. Yang, Y.J. Ji, X.Y. Ma, J. Xu, D.L. Que, J. Phys. Chem. B Vol. 108 (2004), p.3955.

[3] X.L. Li, J.P. Ge, and Y.D. Li, Chem. Eur. J. Vol. 10 (2004), p.6163.

[4] D.F. Zhang, L.D. Sun, J.L. Yin, C.H. Yan, R.M. Wang, J. Phys. Chem. B Vol. 109 (2005), p.8786.

[5] I. Uzcanga, I. Bezverkhyy, P. Afanasiev, C. Scott, M. Vrinat, Chem. Mater. Vol. 17 (2005), p.3575.

[6] S. He, H. Maeda, M. Uehara, M. Miyazaki, Mater. Lett. Vol. 61 (2006), p.626.

[7] A. Dupont, C. Parent, B. Le Garrec, J.M. Heintz, J. Solid State Chem. Vol. 171 (2003), p.152.

[8] H. Choo, B.L. He, K.Y. Liew, H.F. Liu, J.L. Li, J. Mol. Catal. A Vol. 244 (2006), p.217.

[9] W. Chen, X.D. Sun, D. Weng, Mater. Lett. Vol. 60 (2006), p.3477.

[10] C. Ristoscu, G. Socol, C. Ghica, I.N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Appl. Surf. Sci. Vol. 252 (2006) p.4857.


[11] T. Suzuki, Y. Tateishi, T. Sugimoto, S. Shinkai, K. Sada, Sci. Tech. Adv. Mater. Vol. 7 (2006), p.605.

[12] S.T. King, J. Catal. Vol. 131 (1991), p.215.

[13] J. N. Yao, K. Hashimoto, A. Fujishima, Nature Vol. 335 (1991), p.624.

[14] J. Svachula, J. Tichy, J. J. Machek, J. Catal. Lett. Vol. 3 (1989), p.257.

[15] I. Honma, H. S. Zhou, Chem. Mater. Vol. 10 (1998), p.103.

[16] G. G. Janauer, A. Dobley, J. D. Guo, P. Zavalij, M. S. Whittingham, Chem. Mater. Vol. 8 (1996), p. (2096).

[17] Z. Hussain, J. Mater. Res. Vol. 16 (2001), p.2695.

[18] M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P. Nelli, G. Sberveglieri, Sens. Actuators B Vol. 48 (1998), p.285.

[19] H. C. Zeng, Inorg. Chem. Vol. 37 (1998), p. (1967).

[20] W. Zhang, and S. T. Oyama, J. Phys. Chem. Vol. 100 (1996), p.10759.

[21] H. F. Liu, R. S. Liu, K. Y. Liew, R. E. Johnson, J. H. Lunsford, J. Am. Chem. Soc. Vol. 106 (1984), p.4117.

[22] Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Appl. Phys. Lett. Vol. 81 (2002), p.5048.

[23] Z.P. Li, L. Gao, S. Zheng, Appl. Catal. A Vol. 236 (2002), p.163.

[24] J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She, Z.L. Wang, Adv. Mater. Vol. 15 (2003), p.1835.