The Mo Loading Effect on Thermo Stability and SO2 Oxidation of SCR Catalyst


Article Preview

The SCR catalysts were produced with V2O5, WO3, MoO3 and anatase type TiO2. The thermo stability of the catalyst with different MoO3 loading was analyzed with TG-DTG. And the SO2 oxidations were researched with a fixed bed reactor under simulated exhaust gas. The different loadings of MoO3 did not effect on the thermo stability of the catalyst with temperature in the test range of 30~1000 °C. The TG–DTG curves of thermal decomposition process of V2O5-WO3-MoO3/TiO2 catalyst showed three mass loss segments: 1st the evaporation of crystal water from 70 °C to 130 °C; 2nd the decomposition of organics from 180 °C to 350 °C; 3rd the decomposition of impurities from 480 °C to 550 °C. The catalyst loading MoO3 showed higher catalytic selectivity compared to the catalysts without MoO3. MoO3 contained in the catalysts prevented SO2 oxidation, improving the oxidation start temperature and reducing the maximum oxidation.



Advanced Materials Research (Volumes 573-574)

Edited by:

Zhenyu Du and Peiyu Ren




Y. Gao et al., "The Mo Loading Effect on Thermo Stability and SO2 Oxidation of SCR Catalyst", Advanced Materials Research, Vols. 573-574, pp. 58-62, 2012

Online since:

October 2012


MoO3, NO, SCR, SO2, TG




[1] J.N. Armor: Environmental catalysis. Appl. Catal. B: Environ. Vol. 1 (1992), p.221.

[2] G. Busca, L. Lietti, G. Ramis, F. Berti: Appl. Catal. B: Environ. Vol. 18 (1998), p.1.

[3] VI. Parvulescu, P. Grange, B. Delmon: Catal. Today Vol. 46 (1998), p.233.

[4] L. Lietti, P. Forzatti, F. Bregani: Steady-state and transient reactivity study of TiO2-supported V2O5-WO3 de-NOx catalysts: relevance of the vanadium-tungsten interaction on the catalytic activity. Ind. Eng. Chem. Res. Vol. 35 (1996), p.3884.


[5] S.L. Lin, W.J. Lee, L. Chia-Fon, S.J. Chen: Energy savings and emission reduction of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbons by adding water-containing acetone and neat soybean oil to a diesel-fueled engine generator. Energy Fuels Vol. 24(8) (2010).


[6] L. Lietti, J. Svachula, P. Forzatti, G. Buscab, G. Ramis, F. Bregani: Surface and catalytic properties of Vanadia-Titania and Tungsta-Titania systems in the Selective Catalytic Reduction of nitrogen oxides. Catal. Today Vol. 17 (1993), p.131.


[7] G. Oliveri, G. Busca, V. Lorenzelli: Structure and surface area evolution of vanadia-on-titania powders upon heat treatment. Mater. Chem. Phys. Vol. 22 (1989), p.511.


[8] L.J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G.P. Toledo, M. Trombetta: Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Appl. Catal. B: Environ. Vol. 248 (1996), p.299.


[9] L. Majocchi, A. Beretta, L. Lietti, E. Tronconi, P. Forzatti, E. Micheli, L. Tagliabue: Kinetics of Higher Alcohol Synthesis over low and high temperature catalysts and simulation of a double-bed reactor. Stud. Surf. Sci. Catal. Vol. 119 (1998).


[10] K. Hiroyuki, T. Katsumi, C. U. Ingemar Odenbrand: Kinetics of the Selective Reduction of NO with NH3 over a V2O5(WO3)/TiO2 Commercial SCR Catalyst. J. Catal. Vol 185 (1999), p.106.


[11] Y. Gao, T. Luan, K. Cheng, T. Lv, Y. Zheng: Industrial experiment on selective catalytic reduction honeycomb catalyst. Proceedings of the CSEE Vol. 31(35) (2011), p.21.

[12] J. Svachula, N. Ferlazzo, P. Forzatti, E. Tronconi: Selective Reduction of NOx by NH3 over Honeycomb DeNOxing Catalysts. Ind. Eng. Chem. Res. Vol. 32 (1993), p.1053.


[13] Q. Liu, Z. Liu, Z. Huang, G. Xie: A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: preparation and evaluation. Catal. Today Vol. 93 (2004), p.833.


[14] L. Lietti, I. Nova, G. Ramis: Characterization and Reactivity of V2O5-MoO3/TiO2 De-NOx SCR Catalysts. J. Catal. Vol 187 (1999), p.419.


[15] F. Nakajima, I. Hamada: The state-of-the-art technology of NOx control. Catal. Today Vol. 29 (1996), p.109.