Superplastic Forming Characteristics of a Fine-Grained Cu-Based Shape Memory Alloy


Article Preview

The influences of temperature and pressure on the blow forming of CuZnAlZr sheet was investigated under free bulging conditions using argon gas. The effects evaluated were the dome height, measured at the dome apex; the specific thickness, the ratio of the actual thickness to the initial thickness; and the thinning factor, the ratio of the actual thickness to the average thickness. The results show that the dome height and the rate of change of dome height with respect to time, dh/dt, increase with increasing temperature and/or pressure. The specific thickness decreases with increasing fractional height (the ratio of the height of a given point above the base line to the height of the apex), and the specific thickness at the apex decreases with increasing temperature and/or pressure as well. The thinning factor decreases with increasing fractional height. Furthermore, this decrease becomes more significant with an increase in either the forming temperature or pressure. The thinning factor at the apex, as a function of the height to base ratio for all conditions falls into the region between m=0.3 and m=0.75 curves.



Edited by:

Zone-Ching Lin, You-Min Huang, Chao-Chang Arthur Chen and Liang-Kuang Chen




C. C. Hsu, "Superplastic Forming Characteristics of a Fine-Grained Cu-Based Shape Memory Alloy", Advanced Materials Research, Vol. 579, pp. 22-31, 2012

Online since:

October 2012





[1] A. K. Ghhos, C. H. Hamilton, Mechanical behavior and hardening characteristics of a superplastic Ti-6Al-4V alloy, Metall. Tran., A10(6) (1979) 699-706.

[2] R. Pearce, Superplasticity-an overview, AGARD Lecture Series No. 168-Superplasticity, AGARD (1989)1-23.

[3] A. H. Chokshi, A. K. Mukherjee, Cavitation failure in superplastic alloys, in: Heikkenen, T. R. McNelly (Eds), Superplasticity in Aerospace, The Metallurgical Society, Warrendale, PA (1988), 167-182.

[4] Y. T. Wu, C. H. Koo, The superplasticity of Ti-Al-Nb alloys, National Taiwan University, Taiwan (1997)61-72.

[5] C. H. Hamilton, Formability: Analysis, Modeling, and Experimentation, A. K. Ghosh, and H. C. Gegel (Eds). The Metallurgical Society, Inc. (1977).

[6] K. A. Padmanabhan and G.T. Davies, Superplasticity, Springer Verlag (1980).

[7] J. Bonet, P. Bhargava and R. D. Wood, Finite element simulation fo 3-dimentional superplastic forming with diffusion bonding, Int. Conf. of Numerical Methods in Industrial Forming Processes (1992)843-849.

[8] J. Bonet, P. Bhargava and R. D. Wood, Superplastic forming of three dimentional diffusion bonding components by finite element method, Int. Conf. of Superplasticity in Advanced Materials Processes (1994)577-582.

[9] R. Grimens and R. G. Butler, The forming behavior of commercially available superplastic aluminum alloys, Superplasticity in aerospace. Warrendale, PA, USA, The Metallurgical Society, Inc. (1988)97-114.

[10] T. T. Anderson and L. Hislop, Production of aerospace parts using superplastical forming and diffusion bonding of Titanuim, Superplasticity in aerospace. Warrendale, PA, USA, The Metallurgical Society, Inc. (1988)345-360.

[11] J. H. Lee, Y.J. Song, D. H. Shin and C. S. Lee, Microstructure evolution during superplastic bulge forming of Ti-6Al-4V alloy, Mater. Sci. and Eng, A243(1998)119-125.


[12] H. S. Yang and A. K. Mukherjee, An analysis of the superplastic forming of a circular sheet diaphragm, Int. J. Mech. Sci., 34(2) (1992)283-297.

[13] E. Onate and O. C. Zienkiewicz, A viscous shell formulation for the analysis of thin sheet metal forming, Int. J. Mech. Sci., 25(2) (1983)305-335.

[14] R. D. Wood, J. Bonet and A. H. S. Wargadipura, Numerical simulation of the superplastic forming of thin sheet components using the finite element method, Int. J. Num. Methods (1990) 1719-1737.


[15] W. C. Zhang, R. D. Wood and O. C. Ziemkiewicz, Superplastic forming analysis using a finite element viscous flow formulation, Aluminum Technology 4(C) (1986)111. 1-111. 6.

[16] F. Jovane, An approximate analysis of the superplastic forming of a thin circular diaphragm: theory and experiments, Int. J. Mech. Sci. 10 (1968) 403-427.


[17] G. C. Cirnfield and R. H. Johnson, The forming of superplastic sheet metal, Int. J. Mech. Sci. 10 (1970) 479-490.

[18] C. H. Hamilton, Superplastic in titanium alloys, Superplastic Forming (1985) 13-22.

[19] A. K. Ghosh, Superplastic in aluminum alloys, Superplastic Forming (1985) 23-31.

[20] M. A. Khallel, K. I. Johnson, C. A. Lavender, M. T. Smith and C. H. Hamilton, Specimen geometry effect on the accuracy of constitutive relation in a superplastic 5083 aluminum alloy, Scripta Meterialia 34(9)(1995)1517-1423.


[21] M. Suery nad B. Bandelet, Flow stress and microstructure in superplastic 60/40 brass, J. Mater. Sci., 8(1973)363-369.


[22] M. Suery and B. Bndelet, Hydrodynamical behaviour of a two-Phase superplastic alloy: alpha / beta brass, Phil. Mag., 41(1980)41-64.


[23] G. Herriot, M. Suery and B. Baudelet, Superplastic behaviour of the Industrial Cu-7P Alloy, Scr. Metal., 6(8) (1972)657-662.


[24] D. W. Livesey and N. Ridley, Superplastic deformation, cavitation, and fracture of microduplex Cu-Ni-Zn alloys, Metall. and Mater. Trans. A 9(4) (1978)519-526.


[25] N. Ridley, D. W. Livesey and A. K. Mukherjee, Effect of strain, strain rate and temperature on cavity size distribution in a superplastic copper-base alloy, J. Mater. Sci. 19(4) (1984)1321-1332.


[26] Z. X. Guo and N.R. Ridley, Modeling of superplastic bulge forming of domes, Mater. Sci. Eng. A114(1989)97-104.

[27] Z. X. Guo and N. Ridley, Modeling of superplastic bulge forming of domes, Mat. Sci. Technol. 6(1990)510-515.

[28] J. A. Belk, A quantitative model of the blow-forming of spherical surfaces in superplastic sheet metal, Int. J. Mech. Sci. 17 (1975)505-511.


[29] K. S. K. Chockalingam, M. Neelakantan, S. Devaraj and K. A. Padmanabhan, On the pressure forming of two superplastic alloys, J. Mater. Sci. 20(4) (1985)1310-1320.


[30] G. J. Davies, J. W. Edington, C. P. Cutler and K. A. Padmanabhan, Superplasticity: A review, J. Mater. Sci. 5(12) (1970)1091-1102.