Real-Time 3-D Mapping for Indoor Environments Using RGB-D Cameras

Abstract:

Article Preview

For three-dimensional (3-D) mapping, so far, 3-D laser scanners and stereo camera systems are used widely due to their high measurement range and accuracy. For stereo camera systems, establishing corresponding point pairs between two images is one crucial step for reconstructing depth information. However, mapping approaches using laser scanners are still restricted by a serious constraint by accurate image registration and mapping. In recent years, time-of-flight (ToF) cameras have been used for mapping tasks in providing high frame rates while preserving a compact size, but lack in measurement precision and robustness. To address the current technological bottleneck, this article presents a 3-D mapping method which employs an RGB-D camera for 3-D data acquisition and then applies the RGB-D features alignment (RGBD-FA) for data registration. Experimental results show the feasibility and robustness of applying the proposed approach for real-time 3-D mapping for large-scale indoor environments.

Info:

Periodical:

Edited by:

Zone-Ching Lin, You-Min Huang, Chao-Chang Arthur Chen and Liang-Kuang Chen

Pages:

435-444

Citation:

L. C. Chen and N. V. Thai, "Real-Time 3-D Mapping for Indoor Environments Using RGB-D Cameras", Advanced Materials Research, Vol. 579, pp. 435-444, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots, The International Journal of Robotics Research, 20, 5, (2001) 335-365.

[2] S. Se, D. Lowe, J. Little. Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks, The International Journal of Robotics Research, 21, 8, (2002) 735-758.

DOI: https://doi.org/10.1177/027836402761412467

[3] S. Thrun, C. Martin, Y. Liu, D. Hahnel, R. Emery-Montemerlo, D. Chakrabarti, W. Burgard. A real-time expectation-maximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots, IEEE Transactions on Robotics and Automation, 20, 3, (2004).

DOI: https://doi.org/10.1109/tra.2004.825520

[4] J. M. Saez, F. Escolano. A global 3-D map-building approach using stereo vision, Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, (2004) 1197-1202.

DOI: https://doi.org/10.1109/robot.2004.1307987

[5] R. Triebel, W. Burgard. Improving simultaneous mapping and localization in 3-D using global constraints, Proceedings of the 20th National Conference on Artificial Intelligence, 3, (2005) 1330-1335.

[6] D. M. Cole, P. M. Newman. Using laser range data for 3-D SLAM in outdoor environments, Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, (2006) 1556-1563.

DOI: https://doi.org/10.1109/robot.2006.1641929

[7] S. May, D. Droeshel, D. Holz, S. Fuchs, E. Malis, A. Nüchter, J. Hertzberg. Three-dimensional mapping with Time-of-Flight cameras, Journal of Field Robotics, Special Issue on Three-dimensional Mapping, Part 2, 26, 11-12, (2009) 934-965.

DOI: https://doi.org/10.1002/rob.20321

[8] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei, I. Posner, R. Shade, D. Schroeter, L. Murphy, W. Churchill, D. Cole. Navigating, recognizing and describing urban spaces with vision and lasers, The International Journal of Robotics Research, 28, 11-12, (2009).

DOI: https://doi.org/10.1177/0278364909341483

[9] S. Thrun, W. Burgard, D. Fox. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3-D mapping, Proceedings of ICRA'00: IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, (2000).

DOI: https://doi.org/10.1109/robot.2000.844077

[10] I. Stamos, P. Allen. Integration of range and image sensing for photorealistic 3-D modeling, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, (2000) 1435–1440.

[11] Y. Liu, R. Emery, D. Chakrabarti, W. Bungard, S. Thrun. Using EM to learn 3-D models of indoor environments with mobile robots, Proceedings of ICML'01: International Conference on Machine Learning, San Francisco, CA, USA, (2001) 329-336.

[12] D. Hähnel, W. Burgard, S. Thrum. Learning compact 3-D models of indoor and outdoor environments with a mobile robot, Robotics and Autonomous Systems, 44, (2003), 15-27.

DOI: https://doi.org/10.1016/s0921-8890(03)00007-1

[13] P. J. Besl, N. D. McKay. A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 2, (1992) 239-256.

DOI: https://doi.org/10.1109/34.121791

[14] D. Chetverikov, D. Svirko, D. Stepanov, P. Krsek. The trimmed iterative closest point algorithm, Proceedings of the 16th International Conference on Pattern Recognition (ICPR '02), Québec City, QC, Canada, (2002) 11-15.

DOI: https://doi.org/10.1109/icpr.2002.1047997

[15] H. Niemann, T. Zinᵦer, J. Schmidt. A refined ICP algorithm for robust 3-D correspondence estimation, Proceedings of the IEEE International Conference on Image Processing (ICIP 2003), Barcelona, Catalonia, Spain, (2003) 14-18.

DOI: https://doi.org/10.1109/icip.2003.1246775

[16] T. Pajdla, L. V. Gool. Matching of 3-D curves using semi-differential invariants, Proceedings of the Fifth International Conference on Computer Vision (ICCV), Cambridge, MA, USA, (1995) 20-23.

DOI: https://doi.org/10.1109/iccv.1995.466913

[17] A. Fusiello, U. Castellani, L. Ronchetti, V. Murino. Model acquisition by registration of multiple acoustic range views, Proceedings of the 7th European Conference on Computer Vision (ECCV '02), Copenhagen, Denmark, (2002) 28-31.

DOI: https://doi.org/10.1007/3-540-47967-8_54

[18] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool. SURF: Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU), 110, 3, (2008) 346-359.

DOI: https://doi.org/10.1016/j.cviu.2007.09.014