Molecular Dynamics Simulation of Thermoelastic Coupling Characteristic for Low-Dimensional Nano-Rod under Thermal Shock

Abstract:

Article Preview

In this paper, the thermoelastic problem of low-dimensional nano copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential function. The rod oriented along x-axis, the left edge of the rod is traction free and the right edge is fixed, free boundary condition is imposed on y and z-axis. At the same time, the left and right ends of the rod are imposed hot and cold bath respectively. By virtue of the molecular dynamics method, the temperature, displacement and stress along the rod at different moment are got. The results show that the temperature, displacement and stress distribution in the mobile region are limited, indicating that the heat propagation speed is limited rather than infinite. In addition, the simulation process are conducted the Large-scale Atomic / Molecular Massively Parallel simulator (LAMMPS) and completed visualization software (Atomeye) in this paper.

Info:

Periodical:

Advanced Materials Research (Volumes 581-582)

Edited by:

Jimmy (C.M.) Kao, Wen-Pei Sung and Ran Chen

Pages:

444-447

Citation:

R. H. Xia et al., "Molecular Dynamics Simulation of Thermoelastic Coupling Characteristic for Low-Dimensional Nano-Rod under Thermal Shock", Advanced Materials Research, Vols. 581-582, pp. 444-447, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] D. H. Tsai and R. A. MacDonald. Physical Review B, Vol. 14(1976)No. 10, pp.4714-4722.

[2] J. R. Ho, C. J. Twu and H. Chichuan. Physical Review B, Vol. 64 (2001) No. 014302, pp.1-10.

[3] C. L. Tien and J. R. Lukes, Chou Fu chu. Microscale Thermophysical Engineering, Vol. 2 (1998) pp.133-137.

[4] H. Xue and C. Shu. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 9 (1999)pp.60-71.

[5] X. W. Wang and X. F. Xu. ASME Journal of Heat Transfer, Vol. 124(2002)pp.265-274.

[6] X. W. Wang and X. F. Xu. International Journal Heat and Mass Transfer, Vol. 46(2003)pp.45-53.

[7] X. W. Wang . Journal of Heat Transfer, Vol. 126 (2004) pp.355-364.

[8] H. E. Alper and P. Politzer. Journal of Molecular Structure (Theochem), Vol. 487(1999)pp.117-125.

[9] D. Poulikakos, S. Arcidiacono and S. Maruyama. Microscale Thermophysical Engineering, Vol. 7 (2003) pp.181-206.

[10] G. Xiang and H. M. Urbassek. Journal of Physics D: Applied Physics, Vol. 39 (2006) pp.4621-4627.

[11] Q. Cheng, H. A. Wu, Y. Wang and X. X. Wang. Applied Physics Letters, Vol. 95 (2009) No. 2, p.1911-(1916).

[12] H. A. Wu, A. K. Soh, X. X. Wang and Z. H. Sun. Key Engineering Materials, Vol. 261-263 (2004)pp.33-38.