Synthesis and Performance of LiNi0.45Mn0.55O2 as Cathodes for Li-Ion Batteries with the Composite Properties of Materials

Abstract:

Article Preview

A compound as the lithium ion battery cathode materials were synthesized by high temperature solid phase synthesis method. The material is mainly the hexagonal structure and space group, and there is a little other phase. The XPS spectra display in the materials the Mn element existed by Mn4+ and the Ni element existed by the mix valent state between Ni2+ and Ni3+; the energy loss spectrum and ICP results are consistent, to ensure that the compounds is LiNi0.45Mn0.55O2 which we need; SEM figure shows it has a loose structure, particle size is about 0.2μm. At a current density 30mA/g at room temperature AC impedance analysis results show that an initial discharge capacity of 298 mAh/g ,which is higher than theoretical capacity of LiMnO2 285 mAh/g, that may be because of the synthesis LiNi0.45 Mn0.55 O2 is composite materials.After 13 circles it dropped to 93.2mAh/g and was steady, the efficiency reached 91.3%.

Info:

Periodical:

Edited by:

B. Xu and H.Y. Li

Pages:

223-227

Citation:

L. Z. Zhao et al., "Synthesis and Performance of LiNi0.45Mn0.55O2 as Cathodes for Li-Ion Batteries with the Composite Properties of Materials", Advanced Materials Research, Vol. 583, pp. 223-227, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] R. Yazami, N. Lebrun, M. Bonneau, et al., J. Power Sources, Vol. 54(2)(1995), p.389.

[2] B. Garcia, J. Farcy, J.P. Pereira-Ramos, ea al., J. Electrochem. Soc., Vol. 144(4) (1997), p.1179.

[3] E.D. Jeong, M.S. Won and Y.B. Shim, J. Power Sources, Vol. 70 (1998), p.70.

[4] R. Monshtev, P. Zlatilova, V. Manev, et al., J. Power Sources, Vol. 62(1) (1996), p.59.

[5] G.X. Wang, S. Zhong, D. H. Bradhurst, et al., J. Power Sources, Vol. 76(2) (1998), p.141.

[6] X. Yongyao and Y. Masaki, J. Power Sources, Vol. 66(1997), p.129.

[7] M. M. Thackeray, S. -H. Y and A. J. Kahaian, J. Electrochem. Solid-state Lett. Vol. 1 (1998), p.7.

[8] A.R. Armstrong and P.G. Bruce, Nature, Vol. 381(6) (1996), p.499.

[9] L. Croguennec, P. Deniard, R. Brec and A. Lecerf, J. Mater. Chem, Vol. 3(1997), p.511.

[10] J-U. Kim, Y-J. Jo, G-C. Park , et al., J. Power Sources, Vol. 119-121(2003), p.686.

[11] Li-Zhu Zhao,Gang Chen and Li-Juan Zhang. Chem. J. Chinese Universities, Vol. 27(10) (2006), p.1815.

[12] L.Z. Zhao, Y.W. Chen and G.R. Wang, Solid State Ionics, Vol. 181(2010), p.1399.

[13] Li-Zhu Zhao, Jin-Cheng Zhang, Xiao-Han Xu, et al., Materials Science Forum, Vol. 694(2011), p.471.

[14] Z. Su , Z.W. Lu , X.P. Gao , et al., J. Power Sources Vol. 189 (2009), p.411.

[15] Qun Liu , Yangxin Li , Zheliang Hu , et al., Electrochimica Acta, Vol 53(2008), p.7298.

[16] N. Treuil,C. Labrugère,M. Menetrier et al., Physical Chemistry B. Vol. 103(12) (1999), p.2100.

[17] K.M. Shaju G.V. Subba Rao and B.V.R. Chowdari, Electrochimica Acta. Vol. 48(2) (2002), p.145.

[18] K.M. Shaju G.V. Subba Rao and B.V.R. Chowdari, Electrochimica Acta., Vol. 48(11) (2003), p.1505.

[19] M.E. Spahr, P. Novák, B. Sehnyder et al., Electrochemical Soc. Vol. 145(4) (1998), p.1113.