Electrochemical Analysis and Applications of New Carbon Materials with Properties of Composite Materials


Article Preview

New carbon materials such as carbon nanotube and graphene will play very important roles in the future life. All of the electrochemical properties and applications of these materials as well as electrochemical analysis applications of physical and chemically modified electrodes based on them would be reviewed. Hence, the scope of the current review is limited to analytical electrochemistry using these two carbon materials, and 60 references are cited.



Edited by:

B. Xu and H.Y. Li




X. Hua et al., "Electrochemical Analysis and Applications of New Carbon Materials with Properties of Composite Materials", Advanced Materials Research, Vol. 583, pp. 75-81, 2012

Online since:

October 2012




[1] S. Iijima, Helical microtubes of graphitic carbon, Nature, 354 (1991) 56-58.

[2] A. Aqel, K.M.M. Abou El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterization, Arabian Journal of Chemistry, 5 (2012) 1-23.

DOI: https://doi.org/10.1016/j.arabjc.2010.08.022

[3] L.C. Jiang, W.D. Zhang, Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing, Electroanalysis, 21 (2009) 988-993.

DOI: https://doi.org/10.1002/elan.200804502

[4] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials, 6 (2007) 183-191.

[5] A. K. Geim, Graphene: Status and prospects, Science, 324 (2009) 1530-1534.

[6] L. Yan, Y.B. Zheng, F. Zhao, S.J. Li, X.F. Gao, B.Q. Xu, P.S. Weiss, Y.L. Zhao, Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials, Chem. Soc. Rev. 41 (2012).

DOI: https://doi.org/10.1039/c1cs15193b

[7] D. Li, R.B. Kaner, Graphene-based materials, Science, 320 (2007) 1170-1171.

[8] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Progress in Materials Science, 56 (2011) 1178-1271.

DOI: https://doi.org/10.1016/j.pmatsci.2011.03.003

[9] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 306 (2004) 666-669.

DOI: https://doi.org/10.1126/science.1102896

[10] S. Alwarappan, A. Erdem, C. Liu, C.Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications, J. Phys. Chem. C. 113 (2009) 8853-8857.

DOI: https://doi.org/10.1021/jp9010313

[11] Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters, 9 (2009) 3318-3322.

DOI: https://doi.org/10.1021/nl901596m

[12] D. Chen, L.H. Tang, J.H. Li, Graphene-based materials in electrochemistry, Chem. Soc. Rev. 39 (2010) 3157-3180.

[13] M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh, Graphene for electrochemical sensing and biosensing, Trends in Analytical Chemistry, 29 (2010) 954-965.

DOI: https://doi.org/10.1016/j.trac.2010.05.011

[14] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev. 39 (2010) 4146-4157.

[15] Y.X. Liu, X.C. Dong, P. Chen, Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41 (2012) 2283-2307.

[16] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, Trends in Analytical Chemistry, 25 (2006) 480-489.

DOI: https://doi.org/10.1016/j.trac.2005.11.008

[17] V.N. Richard, The trials of new carbon, Nature, 469 (2011) 14-16.

[18] F. Zhao, X.E. Wu, M.K. Wang, Y. Liu, L.X. Gao, S.J. Dong, Electrochemical and Bioelectrochemistry Properties of room-temperature ionic liquids and carbon composite materials, Anal. Chem. 76 (2004) 4960-4967.

DOI: https://doi.org/10.1021/ac0494026

[19] P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochemistry and Bioenergetics, 41 (1996) 121-125.

DOI: https://doi.org/10.1016/0302-4598(96)05078-7

[20] J.J. Davis, R.J. Coles, H. Allen, O. Hill, Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem. 440 (1997) 279-282.

[21] L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, Role of carbon nanotubes in electroanalytical chemistry: A review, Analytica Chimica Acta, 622 (2008) 11-47.

DOI: https://doi.org/10.1016/j.aca.2008.05.070

[22] P.R. Solanki, A. Kaushik, A.A. Ansari, A. Tiwari, B.D. Malhotra, Multi-walled carbon nanotubes/ sol-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor, Sens. Actuat. B: Chem. 137 (2009) 727-735.

DOI: https://doi.org/10.1016/j.snb.2008.12.044

[23] R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G. Davies, A. Russell, R.G. Compton, Carbon nanotube-ionic liquid composite sensors and biosensors, Anal. Chem. 81 (2009) 435-442.

DOI: https://doi.org/10.1021/ac801853r

[24] M. Pumera, A. Merkoci, S. Alegret, Carbon nanotube-epoxy composites for electrochemical sensing, Sens. Actuat. B: Chem. 113 (2006) 617-622.

DOI: https://doi.org/10.1016/j.snb.2005.07.010

[25] D.R. Shobha Jeykumari, S. Ramaprabhu, S.S. Narayanan, A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide, Carbon, 45 (2007) 1340-1353.

DOI: https://doi.org/10.1016/j.carbon.2007.01.006

[26] J. Wang, M. Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Anal. Chem. 75 (2003) 2075-(2079).

DOI: https://doi.org/10.1021/ac030007+

[27] J.C. Abbar, S.J. Malode, S.T. Nandibewoor, Electrochemical determination of a hemorheologic drug, pentoxifylline at a multi-walled carbon nanotube paste electrode, Bioelectrochemistry, 83 (2012) 1-7.

DOI: https://doi.org/10.1016/j.bioelechem.2011.06.008

[28] M. Mazloum-Ardakani, B. Ganjipourb, H. Beitollahi, M.K. Amini, F. Mirkhalaf , H. Naeimi, M. Nejati-Barzoki, Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: Application to the analysis of some real samples, Electrochimica Acta, 56 (2011).

DOI: https://doi.org/10.1016/j.electacta.2011.07.021

[29] G.A. Rivasa, M.D. Rubianes, M.C. Rodríguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing, Talanta, 74 (2007) 291-307.

DOI: https://doi.org/10.1016/j.talanta.2007.10.013

[30] R. Olivé-Monllau, M.J. Esplandiu, J. Bartrolí, M. Baeza, F. Céspedes, Strategies for the optimization of carbon nanotube/polymer ratio in composite materials: Applications as voltammetric sensors, Sensors and Actuators B, 146 (2010) 353-360.

DOI: https://doi.org/10.1016/j.snb.2010.02.017

[31] P. Yáñez-Sedeño, J. Riu, J.M. Pingarrón, F.X. Rius, Electrochemical sensing based on carbon nanotubes, Trends in Analytical Chemistry, 29 (2010) 939-953.

DOI: https://doi.org/10.1016/j.trac.2010.06.006

[32] Q. Zhao, Z.H. Gan, Q.K. Zhuang, Electrochemical sensors based on carbon nanotubes, Electroanalysis, 14 (2002) 1609-1613.

DOI: https://doi.org/10.1002/elan.200290000

[33] J.A. Robinson, E.S. Snow, Ş.C. Badescu, T.L. Reinecke, F.K. Perkins, Role of defects in single-walled carbon nanotube chemical sensors, Nano Lett. 6 (2006) 1747-1751.

DOI: https://doi.org/10.1021/nl0612289

[34] C. Li, Y. Zhang, M. T. Cole, S.G. Shivareddy, J.S. Barnard, W. Lei, B.P. Wang, D. Pribat, G.A.J. Amaratunga, W.I. Milne, Hot electron field emission via individually transistor-ballasted carbon nanotube arrays, ACS Nano. 6 (2012) 3236-3242.

DOI: https://doi.org/10.1021/nn300111t

[35] C. Klinke, E. Delvigne, J.V. Barth, K. Kern, Enhanced field emission from multiwall carbon nanotube films by secondary growth, J. Phys. Chem. B, 109 (2005) 21677-21680.

DOI: https://doi.org/10.1021/jp054110+

[36] K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube field-effect transistor, Science, 302 (2003) 1380-1382.

DOI: https://doi.org/10.1126/science.1091022

[37] A.D. Franklin, G.S. Tulevski, S.J. Han, D. Shahrjerdi, Q. Cao, H.Y. Chen, H.S.P. Wong, W. Haensch, Variability in carbon nanotube transistors: Improving device-to-device consistency, ACS Nano. 6 (2012) 1109-1115.

DOI: https://doi.org/10.1021/nn203516z

[38] P.X. Hou, Q.H. Yang, S. Bai, S.T. Xu, M. Liu, H.M. Cheng, Bulk storage capacity of hydrogen in purified multiwalled carbon nanotubes, J. Phys. Chem. B. 106 (2002) 963-966.

DOI: https://doi.org/10.1021/jp0136112

[39] J.E. Trancik, S.C. Barton, J. Hone, Transparent and catalytic carbon nanotube films, Nano Lett. 8 (2008) 982-987.

DOI: https://doi.org/10.1021/nl071945i

[40] K.Y. Lee, M. Kim, J. Hahn, J.S. Suh, I. Lee, K. Kim, S.W. Han, Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface, Langmuir, 22 (2006) 1817-1821.

DOI: https://doi.org/10.1021/la052435b

[41] C.E. Banks, A. Crossley, C. Salter, S.J. Wilkins, R.G. Compton, Carbon nanotubes contain metal impurities which are responsible for the electrocatalysis, seen at some nanotube-modified electrodes, Angew. Chem. Int. Ed. 45 (2006) 2533-2537.

DOI: https://doi.org/10.1002/anie.200600033

[42] Z. Liu, J. Wang, D.H. Xie, G. Chen, Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing, Small, 4 (2008) 462-466.

DOI: https://doi.org/10.1002/smll.200701018

[43] J. Wang, Y.H. Lin, Functionalized carbon nanotubes and nanofibers for biosensing applications, Trends in Analytical Chemistry, 27 (2008) 619-626.

DOI: https://doi.org/10.1016/j.trac.2008.05.009

[44] D.R.S. Jeykumari, S.S. Narayanan, Functionalized carbon nanotube-bienzyme biocomposite for amperometric sensing, Carbon, 47 (2009) 957-966.

DOI: https://doi.org/10.1016/j.carbon.2008.11.050

[45] C.G. Hu, Y.Y. Zhang, G. Bao, Y.L. Zhang, M.L. Liu, Z.L. Wang, DNA functionalized single-walled carbon nanotubes for electrochemical detection, J. Phys. Chem. B. 109 (2005) 20072- 20076.

DOI: https://doi.org/10.1021/jp0550457

[46] X.L. Hou, G.J. Shen, L. Meng, L. Zhu, M. Guo, Multi-walled carbon nanotubes modified glass carbon electrode and its electrocatalytic activity towards oxidation of paracetamol, Russian Journal of Electrochemistry, 47 (2011) 1262-1267.

DOI: https://doi.org/10.1134/s1023193511110103

[47] Z.H. Yin, Q. Xu, Y. Tu, Q.J. Zou, J.H. Yu, Y.D. Zhao, Electrocatalysis of emodin at multi-wall nanotubes, Bioelectrochemistry, 72 (2008) 155-160.

DOI: https://doi.org/10.1016/j.bioelechem.2008.01.005

[48] S. Qu, J. Wangb, J. Kong, P. Yang, G. Chen, Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing, Talanta, 71 (2007) 1096-1102.

DOI: https://doi.org/10.1016/j.talanta.2006.06.003

[49] R.F. Gao, J.B. Zheng, Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase, Electrochemistry Communications, 11 (2009) 608-611.

DOI: https://doi.org/10.1016/j.elecom.2008.12.060

[50] X. Qin, H.C. Wang, X.S. Wang, Z.Y. Miao, L.L. Chen, W. Zhao, M.M. Shan, Q. Chen, Amperometric biosensors based on gold nanoparticles-decorated multiwalled carbon nanotubes -poly(diallyldimethylammonium chloride) biocomposite for the determination of choline, Sensors and Actuators B, 147 (2010).

DOI: https://doi.org/10.1016/j.snb.2010.03.010

[51] R. Devi, S. Yadav, C.S. Pundir, Electrochemical detection of xanthine in fish meat by xanthine oxidaseimmobilized on carboxylated multiwalled carbon nanotubes/polyaniline composite film, Biochemical Engineering Journal, 58-59 (2011) 148-153.

DOI: https://doi.org/10.1016/j.bej.2011.09.008

[52] Y. Gao, Y. Cao, D.G. Yang, X.J. Luo, Y.M. Tang, H.M. Li. Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.

DOI: https://doi.org/10.1016/j.jhazmat.2011.10.066

[53] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3 (2008) 101-105.

DOI: https://doi.org/10.1038/nnano.2007.451

[54] M. Zhou, Y.M. Zhai, S.J. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem. 81 (2009) 5603-5613.

DOI: https://doi.org/10.1021/ac900136z

[55] Y. Wang, Y.M. Li, L.H. Tang, J. Lu, J.H. Li, Application of graphene-modified electrode for selective detection of dopamine, Electrochemistry Communications, 11 (2009) 889-892.

DOI: https://doi.org/10.1016/j.elecom.2009.02.013

[56] D.F. Han, C.S. Shan, L.P. Guo, L. Niu, D.X. Han, Electro-oxidation of ascorbic acid on PVP-stabilized graphene electrode, Che.Res.Chinese Universities, 26 (2010) 287-290.

[57] Z.H. Wang, J.F. Xia, L. Y Zhu, F.F. Zhang, X.M. Guo, Y.H. Li, Y.Z. Xia, The fabrication of poly (acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid, Sens. Actuators B: Chem. 161 (2012).

DOI: https://doi.org/10.1016/j.snb.2011.09.082

[58] D.B. Lu, Y. Zhang, L.T. Wang, S.X. Lin, C.M. Wang, X.F. Chen, Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly(diallyldimethylammonium chloride)- functionalized grapheme nanocomposite film, Talanta, 88 (2012) 181-186.

DOI: https://doi.org/10.1016/j.talanta.2011.10.029

[59] Y. Fan, J.H. Liu, C.P. Yang, M. Yu, P. Liu, Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol, Sensors and Actuators B, 157 (2011) 669-674.

DOI: https://doi.org/10.1016/j.snb.2011.05.053

[60] J.D. Huang, Q. Lin, X.M. Zhang, X.R. He, X.R. Xing, W.J. Lian, M.M. Zuo, Q.Q. Zhang, Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol, Food Research International, 44 (2011).

DOI: https://doi.org/10.1016/j.foodres.2010.11.006