Crystal Growth, Spectral, Thermal and Optical Properties of Phthalic Anhydride (PA) Single Crystal

Abstract:

Article Preview

ABSTRACT Organic single crystal of Phthalic Anhydride (PA) was successfully grown by slow evaporation method. The structure of the grown crystal was confirmed by X-ray diffraction analysis. FT-IR, and FT-Raman spectral analysis of the crystalline samples reveal that the crystalline sample consists of all functional groups. The placement of protons was identified from H1-NMR spectral analysis. UV-Visible and photoluminescence spectral analyses were carried out for the grown crystals. The thermal behavior was studied with TGA-DTA analyses. The existence of second harmonic generation (SHG) signal was observed using Nd:YAG laser with a fundamental wavelength of 1064 nm. Keywords: Organic crystals, NLO crystals

Info:

Periodical:

Edited by:

D. Rajan Babu

Pages:

136-140

Citation:

S. Janarthanan et al., "Crystal Growth, Spectral, Thermal and Optical Properties of Phthalic Anhydride (PA) Single Crystal", Advanced Materials Research, Vol. 584, pp. 136-140, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] T. Ishiguro, K. Yamaji, Organic Superconductors, Springer, Berlin, (1990).

[2] J.P. Farges, Organic Conductors, Marcel Dekker, New York, (1994).

[3] B.G. Penn, B.H. Cardelino, C.E. Moore, A.W. Shields, D.O. Frazier, Prog. Cryst. Growth Charact. 22 (1991) 19–51.

[4] B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, Wiley, New York, (1991).

[5] J. Zyss, Molecular Nonlinear Optics Materials, Physics and Devices, Academic Press/ Harcourt Brace and Jovanovich, New York, 1994, p.479.

[6] Suehiro Iwata, Jiro Tanaka, and Pumo Saburo, J. Chem. Phys. 47 (1967) 2203.

[7] J. George and S. K. Premachandran, J. Cryst. Growth 37 (1977) 189.

[8] J. George and S. K. Premachandran, J. Cryst. Growth 43 (1978) 126.

[9] J. George and S. K. Premachandran, J. Phys. D 12 (1979) 112.

[10] N. Vijayan, G. Bhagavannarayana, K. K. Maurya, S. Pal, S. N. Datta, R. Gopalakrishan, and P. Ramasamy, Cryst. Res. Technol. 42 (2007) 195.

[11] S. Janarthanan, R. Sugaraj Samuel, S. Selvakumar, Y.C. Rajan, D. Jayaraman, S. Pandi, J. Mater. Sci. Technol. 27-3 (2011) 271.

[12] C. Alosious Gonsago, Helen Merina Albert, P. Malliga and A. Joseph Arul Pragasam, J. Therm. Anal. Calori. 107-3 (2012) 1231.

DOI: https://doi.org/10.1007/s10973-011-1719-y

[13] S. Janarthanan, R. Sugaraj Samuel, Y. C. Rajan and S. Pandi, J. Therm. Anal. Calori. 107- 3 (2012) 1213.

[14] Mersmann, A. Crystallization Technology Handbook, 2nd ed.; Marcel Dekker: New York, NY, (2001).

[15] Mullin, J. W. Crystallization, 4th ed.; Butterworth-Heinemann: Boston, MA, (2001).

[16] Myerson, A. S. Handbook of Industrial Crystallization, 2nd ed.; Butterworth-Heinemann: Boston, MA, (2002).

[17] C.G.C. Catesby, Acta Cryst. 16 (1963) 392.

[18] K. C. Banerji, Proc. Natn. Acad. Sci. Ind. 25A (1958) 115.

[19] S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798.