High-Temperature Electrical Transport Property of Misfit Cobaltite of Ca3-xNdxCo4-xCuxO9 (x = 0.0 – 0.4)


Article Preview

Polycrystalline samples of the Ca3-xNdxCo4-xCuxO9 (x = 0.0 - 0.4) were prepared by the sol-gel cum combustion method using sucrose to investigate the effects of the coupled substitution of Nd and Cu on Ca and Co sites simultaneously on electrical property of Ca3Co4O9 (Co349). The products were characterized by powder x-ray diffraction (XRD), thermogravimetry (TG) / differential thermal analysis (DTA) and scanning electron microscopy (SEM). Powder XRD patterns reveal the formation of single-phase products up to x = 0.4. Coupled substitution increases the solubility of Cu on Co site, in contrast to the limited solubility of Cu (x = 0.3) when separately substituted. TGA confirms the formation of the Ca3Co4O9 phase at around 680 0C. The grain size of the parent and substituted products is in the range of 200-250 nm. Electrical resistivity (ρ) measurement was performed in the temperature range of 300 - 800 K. Electrical resistivity (ρ) of parent sample shows metallic type conduction behavior up to 500 K and above 500 K, it shows semiconducting behavior. All the substituted compositions show semiconducting behavior with increasing electrical resistivity with increasing x. The conduction mechanism was also analyzed. Parent and substituted samples behave thermally activated conduction mechanism in the temperature range of 600 – 800 K.



Edited by:

D. Rajan Babu




M. Senthilkumar and R. Vijayaraghavan, "High-Temperature Electrical Transport Property of Misfit Cobaltite of Ca3-xNdxCo4-xCuxO9 (x = 0.0 – 0.4)", Advanced Materials Research, Vol. 584, pp. 162-166, 2012

Online since:

October 2012




[1] T. M and M. A. Subramanian (2006). Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, MRS Bulletin, Vol. 31, p.188.

[2] G. D. Mahan, Solid State Physics, vol 51 ed H Ehrenreich and F Spaepen, New York: Academic, 1998, p.81.

[3] D. Perrin, M. Chitroub, S. Scherrer and H. Scherrer, Study of the n-type Bi2Te2. 7Se0. 3 doped with bromine impurity, J. Phys. Chem. Solids, 61(2000) 1687-1691.

DOI: https://doi.org/10.1016/s0022-3697(00)00030-5

[4] O. Yamashita, S. Tomiyoshi and K. Makita. Bismuth telluride compounds with high thermoelectric figures of merit, J. Appl. Phys. 93 (2003) 368.

DOI: https://doi.org/10.1063/1.1525400

[5] Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang and J. P. Tu, Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure, Appl. Phys. Lett., 92 (2008) 143106.

DOI: https://doi.org/10.1063/1.2900960

[6] B. C. Sales, D. Mandrus and R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science, 272(1996) 1325-1328.

DOI: https://doi.org/10.1126/science.272.5266.1325

[7] G. S Nolas, M. Kaeser, R. T. Littleton and T. M. Tritt, High figure of merit in partially filled ytterbium skutterudite materials, Appl. Phys. Lett. 77 (2000) 1855.

DOI: https://doi.org/10.1063/1.1311597

[8] L. D. Chen, T. Kawahara, X. F. Tang, T. Goto and T. Hirai, Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12, J. Appl. Phys., 90 (2001) 1864.

DOI: https://doi.org/10.1063/1.1388162

[9] M. W. Heller,., R. D. Nasby and Jr. R. T. Johnson, Electrical transpoet properties of SiGe thermoelectric alloys doped with As, P, and As+P, J. Appl. Phys. 47 (1976) 4113.

[10] I. Terasaki, Y. Sasago and K. Uchinokura, Large thermoelectric power of NaCo2O4 single crystals, Phy. Rev. B. 56(1997), 12685-12687.

[11] A. C. Masset, C. Michel, A. Magnan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau and J. Hejtmanek. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, Phys. Rev. B. 62 (2000), 166-175.

DOI: https://doi.org/10.1103/physrevb.62.166

[12] D. Wang, L. Chenb, Q. Wang, J. Li, Fabrication and thermoelectric properties of Ca3−xDyxCo4O9+δ system, J. of Alloys and Compds. 376 (2004) 58–61.

DOI: https://doi.org/10.1016/j.jallcom.2003.12.018

[13] D. Wang, L. Chen, Q. Yao, J. Li, High-temperature thermoelectric properties of Ca3Co4O9+ δ with Eu substitution, Solid State Comm., 129 (2004) 615–618.

DOI: https://doi.org/10.1016/j.ssc.2003.11.045

[14] Y. Wang, Y. Sui , J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, W. Su, High temperature transport and thermoelectric properties of Ag-substituted Ca3Co4O9+δ system, J. of Alloys and Compds. 448 (2008) 1–5.

DOI: https://doi.org/10.1002/chin.200811007

[15] J. Pei, G. Chen, D.Q. Lu, P.S. Liu, N. Zhou, Synthesis and high temperature thermoelectric properties of Ca3. 0−x−yNdxNayCo4O9+δ, Solid State Comm. 146 (2008) 283–286.

DOI: https://doi.org/10.1016/j.ssc.2008.03.012

[16] H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao, F.P. Wang, Thermoelectricproperties of Ca3-xYxCo4O9+ δ ceramics, Journal of Physics and Chemistry of Solids 70 (2009) 600–603.

[17] F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, G.Z. Zhang, Effects of Pr doping on thermoelectric transport properties of Ca3-xPrxCo4O9, Solid State Sciences 13 (2011) 1443-1447.

DOI: https://doi.org/10.1016/j.solidstatesciences.2011.05.009

[18] F. Delorme, C. Fernandez Martin, P. Marudhachalam, D. Ovono Ovono, G. Guzman, Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics, Journal of Alloys and Compds. 509 (2011) 2311–2315.

DOI: https://doi.org/10.1016/j.jallcom.2010.10.209

[19] N.V. Nonga, Chia-Jyi Liua, M. Ohtakib, High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+ δ, Journal of Alloys and Compounds 509 (2011) 977–981.

DOI: https://doi.org/10.1016/j.jallcom.2010.09.150

[20] M. Prevel, E. Sudhakar Reddy, O. Perez, W. Kobayashi, I. Terasaki, C. Goupil and G. Noudem, Thermoelectric properties of sintered and textured Nd-substituted Ca3Co4O9 ceramics, Jpn Journal of Applied Physics, 46 (2007) 6533-6538.

DOI: https://doi.org/10.1143/jjap.46.6533

[21] D. Li, X.Y. Qin, Y.J. Gu, J. Zhang, The effect of Mn substitution on thermoelectric properties of Ca3MnxCo4-xO9 at low temperatures, Solid State Communications 134 (2005) 235–238.

DOI: https://doi.org/10.1016/j.ssc.2005.01.044

[22] Y. Wang, Y. Sui, P. Ren, L. Wang, X. Wang, W. Su, and H. Fan, Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca3Co4-xMxO9 (M=Fe, Mn, and Cu), Chem. Mater., 22 (2010) 1155–1163.

DOI: https://doi.org/10.1021/cm902483a

[23] Q . Yao, D.L. Wang, L.D. Chen, X. Shi, and M. Zhou, Effects of partial substitution of transition metals for cobalt on the high-thermoelectric properties of Ca3Co4O9+δ, J. Appl. Phys., 97 (2005) 103905.

DOI: https://doi.org/10.1063/1.1898443

[24] M. Senthilkumar and R. Vijayaraghavan, High-temperature resistivity and thermoelectric properties of coupled substituted Ca3Co2O6. Sci. Technol. Adv. Mater. 10 (2009) 015007.

[25] A. C. Masset, C. Michel, A. Magnan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau and J. Hejtmanek Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B. 62 (2000) 166-175.

DOI: https://doi.org/10.1103/physrevb.62.166

[26] Y.F. Zhang, J.X. Zhang, Q.M. Lu, and Q.Y. Zhang, Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method, Mater. Lett. 60 (2006) 2443–2446.

DOI: https://doi.org/10.1016/j.matlet.2006.01.013

[27] M. Sopicka-Lizer, , P. Smaczynski, K. Kozlowska, E. Bobrowska-Grzesik, J. Plewa, and H. Altenburg, Preparation and characterization of calcium cobaltite for thermoelectric application. J. European Ceramic Society, 25 (2005) 1997-(2001).

DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.222

[28] R. Asahi, J. Sugiyama and T. Tani, Electronic structure of misfit-layered calcium cobaltite, Phys. Rev. B. 66 (2002) 155103.

DOI: https://doi.org/10.1103/physrevb.66.155103

[29] J. Sugiyama, J. H. Brewer, E. J. Ansaldo, H. Itahara, K. Dohmae, Y. Seno, C. Xia, and T. Tani. Hidden magnetic transitions in thermoelectric layered cobaltite, [Ca2CoO3]0. 62[CoO2], Phys. Rev. B. 68 (2003), 134423.

DOI: https://doi.org/10.1103/physrevb.68.134423

[30] P. Limellete, V. Hardy, P. Auban-Senzier, D. Jerome, D. Flahaut, S. Hebert, R. Fresard, Ch. Simon, J. Noudem and A. Maignan Strongly correlated properties of the thermoelectric cobalt oxide Ca3Co4O9, Phys. Rev. B. 71 (2005). 233108.

DOI: https://doi.org/10.1103/physrevb.71.233108

[31] Y. Wang,Y. Sui, J. Cheng, X. Wang, W. Su, X. Liu and H. J. Fan, Doping-Induced Metal-Insulator Transition and the Thermal Transport properties in Ca3-xYxCo4O9, J. Phys. Chem. C. 114 (2010) 5174-5181.

DOI: https://doi.org/10.1021/jp911078h