Spin-Coating Temperature Induced Changes in Ferroelectric Crystallinity in Polyvinylidene Fluoride Ultrathin Films


Article Preview

In the present study, calculated amount of polyvinylidene fluoride (PVDF) was added to a mixture of two different polar solvents and maintained under continuous stirring for overnight. The PVDF solution thus obtained was spin-coated over divergent substrates like KBr and gold coated glass substrates at 80 oC. The spin-coated samples were further exposed to varying thermal conditions such as as-cast (AC), annealed at 130 °C (AN) and melt (200 °C)-slow cooled (MSC) for a period of time. FTIR spectroscopic data obtained from this study was found to be quite useful in analyzing the changes in absorption intensity of crystalline phase changes as a function of varying substrate and heat treatment conditions. Aβ,γ,α/A1073 ratio was observed to be favorable for AN samples when compared to that of AC and MSC samples, and among the substrates, gold is more preferable due to its real-time usage as a substrate in electronic device applications.



Edited by:

D. Rajan Babu




D. M. Dhevi et al., "Spin-Coating Temperature Induced Changes in Ferroelectric Crystallinity in Polyvinylidene Fluoride Ultrathin Films", Advanced Materials Research, Vol. 584, pp. 197-200, 2012

Online since:

October 2012




[1] A.J. Lovinger, Developments in Crystalline Polymers, Applied Science, London, (1982).

[2] T.J. Reece, S. Ducharme, A.V. Sorokin, M. Poulsen, Appl. Phys. Lett. 82 (2003) 142.

[3] M.V. Mhalgi, D.V. Khakhar, A. Misra, Polym. Eng. Sci. 47 (2007) 1992-(2004).

[4] C.H. Du, B.K. Zhu, Y.Y. Xu, J. Appl. Polym. Sci. 104 (2007) 2254-2259.

[5] J.P. Luongo, J. Polym. Sci. Part A-2: Polym. Phys. 10 (1972) 1119.

[6] A.A. Prabu, J.S. Lee, K.J. Kim, H.S. Lee, Vib. Spectros. 41 (2006) 1–13.

[7] S. Weinhold, M.H. Litt, J.B. Lando, Macromolecules 13 (1980) 1178.

[8] Y. Takahashi, H. Tadokoro, Macromolecules 13 (1980) 1317.

[9] A.J. Lovinger, Macromolecules 14 (1981) 322.

[10] A.J. Lovinger, Macromolecules 15 (1982) 40.

[11] K. Matsushige, T. Takemura, J. Polym. Sci. Polym. Phys. Ed. 16 (1978) 921.

[12] A.A. Prabu, K.J. Kim, C. Park, Vib. Spectros. 49 (2009) 101–109.

[13] S. Yoon, A.A. Prabu, K.J. Kim, C. Park, Macromol. Rapid Commun. 29 (2008) 1316.

[14] R.G. Kepler, R. Anderson, J. Appl. Phys. 49 (1978) 4490.

[15] M. Kobayashi, K. Tashiro, H. Tadokoro, Macromolecules 8 (1975) 158.

[16] G. Cortili, G. Zerbi, Spectrochim. Acta Part-A 23A (1967) 2216.

[17] S. Ramasundaram, S. Yoon, K.J. Kim, J.S. Lee, Macromol. Chem. Phys. 209 (2008) 2516.

[18] R. Gregorio Jr., M. Cestari, J. Polym. Sci. Part-B Polym. Phys. 32 (1994) 859-70.

[19] R. Gregorio, Jr., D.S. Borges, Polymer 49 (2008) 4009-4016.