Optical Properties and Structural Studies on Nd3+ Doped Borate Glasses Containing Heavy Metal Oxide


Article Preview

Abstract. Neodymium doped sodium bismuth borate (Na2O-Bi2O3-B2O3) glasses were prepared by melt quenching method. Amorphous nature of the glass is confirmed through the X-ray diffraction study. Density of the investigated glasses increases systematically with Bi2O3 concentration. Glass transition temperature decrease slightly with increase of Bi2O3 content and could be due to increase in the number of weaker Bi-O linkages by stronger Nd-O linkages. Fourier Transform - Infrared (FTIR) spectroscopy has been carried out. The IR spectra of the glasses reveal that the strong network consisting of diborate units and is unaffected by the variation of Nd3+ concentration. UV-Visible absorption studies have been performed on these glasses to examine the optical spectra and the optical band gap energy has been calculated. The intensity of the absorption band increases with the increase of Nd3+ concentration. This is due to the formation of non-bridging oxygens (NBO’s) in the structure.



Edited by:

D. Rajan Babu




V. C. Veeranna Gowda et al., "Optical Properties and Structural Studies on Nd3+ Doped Borate Glasses Containing Heavy Metal Oxide", Advanced Materials Research, Vol. 584, pp. 207-211, 2012

Online since:

October 2012




[1] J. Krogh-Moe, Phys. Chem. Glasses 6 (1965) 46-54.

[2] W.H. Dumbaugh and J.C. Lapp, J. Am. Ceram. Soc. 75 (1992) 2315-2325.

[3] X. Jiang and A. Jha, J. Opt. Mater. 33 (2010) 14–18.

[4] K.J. Rao and S. Lakshmi Raghavan, J. Solid State Chem. 111 (1994) 190-196.

[5] V. Rajendran, N. Palanivelu, B.K. Chaudhuri and K. Goswami, J. Non-Cryst. Solids 320 (2003) 195-209.

[6] B. Karthikeyan, S. Mohan and M.L. Baesso, Physica B 337 (2003) 249–254.

[7] M.B. Saisudha, K.S.R.K. Rao, H.L. Bhat and J. Ramakrishna, J. Appl. Phys. 80 (1996) 4845.

[8] V. Dimitrov and T. Komatsu, J. Non-Cryst. Solids 249 (1999) 160-179.

[9] L. Baia, R. Stefen, W. Kiefer, J. Popp, S.J. Simon, J. Non-Cryst. Solids 303 (2002) 379-386.

[10] Yasser B. Saddeeka, and M.S. Gaafarb, Mater. Chem. Phys. 115 (2009) 280–286.

[11] B. Karthikeyan and S. Mohan, Physica B 337 (2003) 298-302.

[12] B. Karthikeyan, R. Philip and S. Mohan, Optics Commun. 246 (2005) 153-162.

[13] Manal Abdel-Baki and Fouad El-Diasty, J. Solid State Chem. 184 (2011) 2762-2769.

DOI: https://doi.org/10.1016/j.jssc.2011.08.015

[14] B. Shashidhar, S. Rehman, A. M. Awasthi and V. Sathe, J. Alloys. Compds. 460 (2008) 699-703.

[15] E.I. Kamitsos, A.P. Patsis and G.D. Chryssikos, J. Non-Cryst. Solids 152 (1993) 246-257.

[16] E.I. Kamitsos, Phys. Chem. Glasses 44 (2003) 79-87.

[17] V. Dimitrov, Y. Dimitriev and A. Montenero, J. Non-Cryst. Solids 180 (1994) 51-57.

[18] L. Baia, R. Stefan, J. Popp, S. Simon and W. Kiefer, J. Non-Cryst. Solids 324 (2003) 109-117.

[19] S. Hazra, A. Gosh, Phys. Rev. B 51 (1995) 851-856.

[20] V.C. Veeranna Gowda, C. Narayana Reddy, K.C. Radha, R.V. Anavekar, J. Etourneau and K.J. Rao, J. Non-Cryst. Solids 353 (2007) 1150-1163.

DOI: https://doi.org/10.1016/j.jnoncrysol.2006.12.117

[21] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4412-4423.

[22] F.A. Davis and N.F. Mott. Philos. Mag. 22 (1970) 903-921.

[23] J.A. Duffy and M.D. Ingram, J. Non-Cryst. Solids 144 (1992) 76-80.