Blue Fluorescence in Doped LaF3 Nanocrystals Synthesized by Microwave Technique


Article Preview

Hexagonal-phase LaF3: Ce3+, Pr3+, and Sm3+ doped (LCPS) nano-crystals have been synthesized by keeping same molarities of rare earth elements using aqueous route. The samples have been synthesized in conventional microwave on low power range in about an hour’s time. The phase formation has been verified by powder X-ray diffraction (XRD).Hexagonal geometry of the LCPS nano-crystals has been observed with an average particle size of 20 nm by TEM analysis. The JCPDS Card No. (32-0483) and selected area electron diffraction (SAED) pattern has been used for identification of crystal structure. The UV- VIS spectra indicated band gap of 5.00eV. The FTIR spectrums have been used for assignment of fundamental vibrations. Blue fluorescence observed with exciting wavelengths of 254 nm respectively. The presence of rare-earth elements in LCPS nano-crystals have been verified by the EDAX spectra.



Edited by:

D. Rajan Babu




S.G. Gaurkhede et al., "Blue Fluorescence in Doped LaF3 Nanocrystals Synthesized by Microwave Technique", Advanced Materials Research, Vol. 584, pp. 219-223, 2012

Online since:

October 2012




[1] H. R. Zheng, X. T . Wang, M. J. Dejneka. J. Lumin. 108 (2004) 395-399.

[2] M . Nogami, T. Enomoto, T. Hayakawa. J. Lumin. 97 (2002)147-152.

[3] P. R. Diamente, M. Raudsepp, F. C. J. M. van Veggel. Adv. Funct. Mater. 17 (2007) 363-368.

[4] S. Heer, K. Kompe, H.U. Gudel, M. Haase. Adv. Mater. 16 (2004) 2102-2105.

[5] J.C. Boyer, L. A . Cuccia, J .A. Capobianco. Nano Lett. 7(2007) 847-852.

[6] F. Evanics, P. R. Diamente, F. C. J. M. van Veggel, G. J. Stanisz, R. S. Prosser. Chem. Mater. 18(2006) 2499-2505.

[7] P. R. Diamente, F. C. J.M. van Veggel. J. Fluoresc. 15 (2005) 543-551.

[8] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, F. C. J. M. van Veggel. J. Phys. Chem. C. 111(2007) 4047-4051.

[9] F . Wang, Y. Zhang, X. Fan, M . Wang. J. Mater. Chem. 16 (2006) 1031-1034.

[10] E. D. Thomas, H. Shields, Y. Zhang, R. T. Williams. J. Lumin. 71(1997) 93-104.

[11] K. Jouda, S. Tanaka, K. Ichikawa, O. Aita. J. Phys. Soc. Jpn. 65(1996) 2585-2589.

[12] P. Rodnyi, E. Melchakov, N. Zakharov, I. Munrob, A. Hopkirk. J. Lumin. 65(1995) 85-89.

[13] R. T. Wegh, A. Meijerink, R. J. Lamminmaiki, J. Holsa, J. of Lumn. 87 (2000)1002-1004.

[14] J . Meng, M. Zhang, Y. Liu. Spect. Acta A. 66 (2007) 81-85.

[15] J. Wang, J. Hu, D. Tang, X. Liu, Z. Zhen. J. Mater. Chem, 17(2007) 1597–1601.

[16] D . Chen, Y. Wang, Y . Yu, E. Ma. Mater. Chem. Phys. 101(2007) 464-469.

[17] D. Pi, F . Wang, X . Fan, M. Wang, Y. Zhang. Materials Letters 61(2007)1337-1340.

[18] L. Yuan fang, C. Wei, W . Shaopeng, G. J. Alan, W. Sarah, K. W. Boon. J. of App. Phy. 103(2008) 063105.

[19] X. Wang, J. Zhuang, Q. Peng , Y. Li. Inorg. Chem, 45(2006) 6661-6665.

[20] C. Li, X. Liu, P . Yang, C. Zhang, H. Lian, J. Lin. J. Phys. Chem.C. 112(2008) 2904-2910.

[21] K. Binnemans, C. G. Walrand. Chem. Phy. Letters. 235 (1995)163-174.