Wet Chemical Synthesis and Characterization of MnS Nanoparticles


Article Preview

The manganese sulfide, MnS, is a wide bandgap (Eg = 3.1eV) diluted magnetic semiconductor belonging to the VIIB-VIA family with outstanding magneto-optical properties. The authors report the synthesis and characterization of MnS nanoparticles. The MnS nanoparticles were synthesized by simple wet chemical method at ambient temperature. Manganese acetate (C4H6MnO4.4H2O) was used as source for Mn+2 ions and thioacetamide (C2H5NS) was used as source for S-2 ions. The energy dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD) were used for stoichiometric and structural characterization of the synthesized nanoparticles respectively. The crystallite size calculated from XRD using Scherrer’s formula and Hall-Williamson relation came out to be of 6.81 nm and 5.27 nm respectively. The optical absorption spectra showed absorption edge at 325 nm corresponding to energy of 3.82 eV, which acknowledged the occurrence of blue shift. The photoluminescence spectra recorded for five different excitation wavelengths viz 250, 275, 280, 300 and 325 nm showed three emission peaks at 463 nm, 550 nm and 821 nm. The TEM and SEM analysis of the particles clearly shows the particles are spherical in shape. The selected area electron diffraction (SAED) pattern showed ring pattern, stating the nanoparticles to be polycrystalline. The obtained results are discussed in details.



Edited by:

D. Rajan Babu




S. H. Chaki et al., "Wet Chemical Synthesis and Characterization of MnS Nanoparticles", Advanced Materials Research, Vol. 584, pp. 243-247, 2012

Online since:

October 2012




[1] C. Gumus, C. Ulutus, Y. Ufuktepe, Opt. Mater. Chem. 29 (2007) 1183-1187.

[2] Y. Cheng, Y. Wang, C. Jia, F. Bao, J. Phys. Chem. B 110 (2006) 24399-24402.

[3] A. P. Alivisatos, Science 271 (1996) 933-937.

[4] C. Gumus, A. Bayri, C. Ulutas, M. Karakaplan, Y. Ufuktepe, J. Optoelectron Adv. Mater. 8 (2006) 261-265.

[5] C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, M. Muller, K. Diesner, H. Tributsch, Thin Solid Film 330 (1998) 70-75.

DOI: https://doi.org/10.1016/s0040-6090(98)00500-8

[6] R. L. Gunshor, A. V. Nurmikko, Semiconductor and Semimetals 44 (1997) 11-13.

[7] Y. Cui, C. M. Lieber, Science 291 (2001) 851-853.

[8] W. U. Huynh, J. J. Dittemer, A. P. Alivisatos, Science 295 (2002) 2425-2427.

[9] Y. Zhang, H. Wang, B. Wang, H. Xu, H. Yan, M. Yoshimura, Opt. Mater. 23 (2003) 433-437.

[10] J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu, Y. Qian, Chem. Mater. 13 (2001) 2169-2172.

[11] J. Mu, Z. Gu, L. Wang, Z. Zhang, H. Sun, S. Z. Kang, J Nanoparticle Res. 10 (2008) 197-201.

[12] S. Biswas, S. Kar, S. Chaudhuri, J Cryst. Growth 284 (2005) 129-135.

[13] S. B. Wang, K. W. Li, R. Zhai, H. Wang, Y. D. Hou, H. Yan, Mater. Chem. Phys. 91 (2005) 298-300.

[14] J. P. Ge, Y. D. Li, Chem. Commun. 19 (2003) 2498-2499.

[15] D. C. Frost, A. Ishitani, C. A. Macdowell, Mol. Phys. 24 (1972) 861-877.

[16] B. Anderson, J. Gjonnes, A. R. Forouhi, J. Less-Comm. Metal. 61 (1978) 273-291.

[17] Wei-Yu Wu, J. N. Schulman, T. Y. Hsu, Uzi Efron, Appl. Phys. Lett. 51 (1987) 710.

[18] P. Bilijana, G. Ivan, T. Atanas, Mater. Chem. Phys. 83 (2004) 245-249.

[19] S. H. Kan, I. Felner, U. Banin, Isr. J. Chem. 41 (2001) 55-62.