Hydrothermal Synthesis and Magnetic Property Studies of Multiferroic YMnO3 Nanorods

Abstract:

Article Preview

Multiferroic YMnO3 nanorods were synthesized by hydrothermal process at 200°C. Hexagonal structure of the synthesized sample was confirmed by powder X-ray diffraction analysis. High resolution scanning electron microscope analysis shows uniform nanorods with average diameter of about 350nm and length of 10µm. Transmission electron microscope and selected area electron diffraction studies reveal the single crystalline nature of nanorods and the lattice fringe width of nanorod is about 0.296nm for the (111) plane with the growth direction along (001) plane (c-axis). The zero-field-cooled and field-cooled magnetization studies show a complicated magnetic transition occurred in the temperature range from 20 to 300K as confirmed by magnetic hysteresis loops.

Info:

Periodical:

Edited by:

D. Rajan Babu

Pages:

253-257

Citation:

R. Dhinesh Kumar and R. Jayavel, "Hydrothermal Synthesis and Magnetic Property Studies of Multiferroic YMnO3 Nanorods", Advanced Materials Research, Vol. 584, pp. 253-257, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] Jian-Tao Han, Yun-Hui Huang, Wei Huang and John B. Goodenough, J. Am. Chem. Soc. 128 (2006) 14454-55.

DOI: https://doi.org/10.1021/ja065520u

[2] Tai-Chun Han, Wei-Lun Hsu, Wei-Da Lee, Nanoscale Res. Lett. 6 (2011) 201.

[3] T. C. Han, M. R. Tsai and C. Y. Wei, J. Appl. Phys. 109 (2011) 07B517.

[4] Raja Das, Adhish Jaiswal, Suguna Adyanthaya and Pankaj Poddar, J. Appl. Phys. 109 (2011) 064309.

DOI: https://doi.org/10.1063/1.3563571

[5] S. F. Wang, H. Yang, T. Xian, X. Q. Liu, J. Catcom. 12 (2011) 625-628.

[6] Gangqiang Zhu, Peng Liu, Yun Liu, Hongyan Miao and Jianping Zhou, J. Am. Ceram. Soc. 91 (2008) 3423-27.

DOI: https://doi.org/10.1111/j.1551-2916.2008.02609.x

[7] Kristin Bergum, Hiroshi Okamoto, Helmer Fjellvag, Tor Grande, Mari-Ann Einarsrud and Sverre M. Selbach, Dalton Trans. 40 (2011) 7583-89.

DOI: https://doi.org/10.1039/c1dt10536a

[8] X. L. Wang, D. Li, T. Y. Cui, P. Kharel, W. Liu and Z. D. Zhang, J. Appl. Phys. 107 (2010) 09B510.

[9] H. W. Zheng, Y. F. Liu, W. Y. Zhang S. J. Liu, H. R. Zhang and K. F. Wang, J. Appl. Phys. 107 (2010) 053901.

[10] Chao Zhang, Jie Su, Xiaofei Wang, et al. J. Alloys and Compd. 509 (2011) 7738-41.

[11] ZHU Lin-lin, CHEN Yan et al. Chem. Res. Chinese Univ. 26 (2010) 707-711.

[12] M. F. Zhang, J. M. Liu, Z. G. Liu, Appl. Phys. A 79 (2004) 1753-56.

[13] Evan S. Stampler, William C. Sheets Wilfrid Prellier, Tobin J. Marks, and Kenneth R. Poeppelmeier, J. Mater. Chem. 19 (2009) 4375-81.

DOI: https://doi.org/10.1039/b900370c

[14] Yongwei Wang, Xiaoying Lu, Yan Chen, Fangli Chi, Shouhua Feng, Xiaoyang Liu, J. Solid State Chem. 178 (2005) 1317-20.

DOI: https://doi.org/10.1016/j.jssc.2004.12.039

[15] W. R. Chen, F. C. Zhang, J. Miao, B. Xu, X. L. Dong, L. X. Cao, X. G. Qiu, and B. R. Zhao, Appl. Phys. Lett. 87 (2005) 042508.