Electrochemical Sensor for the Detection of Dopamine in the Presence of Ascorbic Acid in Neutral pH on Graphitized Nanoporous Carbon Modified Glassy Carbon Electrode


Article Preview

Selective detection of dopamine (DA) in presence of ascorbic (AA) is an important analytical problem, due to its combined existence in the biological system. In the present study, we are reporting an electrochemical detection method for dopamine (DA) in the presence of ascorbic acid (AA) using graphitized nanoporous carbon (NPC) modified glassy carbon electrode (GCE/NPC) in 0.1 M phosphate buffer solution. The modified electrode shows excellent electrocatalytic activities towards the oxidations of DA and AA in neutral pH buffer solution. Compared to unmodified GCE, GCE/NPC shows well separated and enhanced oxidation peak currents. Differential pulse voltammetric technique used as qualitative analytical tool for the detection of DA. The oxidation peak potentials for DA and AA were at -80 and 136 mV vs Ag/AgCl respectively. The modified electrode shows good stability and reproducibility with the relative standard deviation value of 2.6 %. The analytical application of the modified electrode (GCE/NPC) was demonstrated for the individual determination of DA in clinical injection and pharmaceutical tablet by using standard addition method.



Edited by:

D. Rajan Babu




R. Thangaraj et al., "Electrochemical Sensor for the Detection of Dopamine in the Presence of Ascorbic Acid in Neutral pH on Graphitized Nanoporous Carbon Modified Glassy Carbon Electrode", Advanced Materials Research, Vol. 584, pp. 334-338, 2012

Online since:

October 2012




[1] M.L.A.V. Heien, A.S. Khan, J.L. Ariansen, J.F. Cheer, P.E.M. Phillips, K.M. Wassum and R.M. Wightman, Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats, Proc. Natl. Acad. Sci., 102 (2005) 10023-10028.

DOI: https://doi.org/10.1073/pnas.0504657102

[2] R.M. Wightman, L.J. May and A.C. Michael, Detection of dopamine dynamics in the brain, Anal. Chem. 60 (1988) 769A-779A.

DOI: https://doi.org/10.1021/ac00164a001

[3] D. Voet, J.G. Voet, Biochemistry, Wiley, New York, 1995. Wikipedia, The free encyclopedia.

[4] Y. Liu, J. Huang, H. Hou and T. You, Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode, Electrochem. Commun. 10 (2008) 1431-1434.

DOI: https://doi.org/10.1016/j.elecom.2008.07.020

[5] H.Y. Wang, Q.S. Hu, L.X. Xu, J.G. Jiang, Y. Sun, Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent, Anal. Chim. Acta 497 (2003) 93-99.

DOI: https://doi.org/10.1016/j.aca.2003.08.050

[6] Y. Hu, X. Li, Z. Pang, Indirect chemiluminescence detection for capillary zone electrophoresis of monoamines and catechol using luminol-K3[Fe(CN)6] system, J. Chromatogr. A 1091 (2005) 194-198.

DOI: https://doi.org/10.1016/j.chroma.2005.07.078

[7] S. Thiagarajan, T. -H. Tsai, S. -M. Chen, Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron. 24 (2009) 2712–2715.

DOI: https://doi.org/10.1016/j.bios.2008.12.010

[8] S. Zhu, H. Li, W. Niu, G. Xu, Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode, Biosens. Bioelectron. 25 (2009) 940–943.

DOI: https://doi.org/10.1016/j.bios.2009.08.022

[9] Y. -R. Kim, S. Bong, Y. -J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron. 25 (2010) 2366–2369.

DOI: https://doi.org/10.1016/j.bios.2010.02.031

[10] C.R. Raj, T. Okajima, T. Ohsaka, Gold nanoparticle arrays for the voltammetric sensing of dopamine, J. Electroanal. Chem. 543 (2003) 127-133.

DOI: https://doi.org/10.1016/s0022-0728(02)01481-x

[11] H. -S. Wang, T. -H. Li, W. -L. Jia, H. -Y. Xu, Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode, Biosens. Bioelectron. 22 (2006) 664-669.

DOI: https://doi.org/10.1016/j.bios.2006.02.007

[12] H. Xie, Z. Wu, S.H. Overbury, C. Liang, V. Schwartz, Investigation of the selective sites on graphitic carbons for oxidative dehydrogenation of isobutane, J. Catal. 267 (2009) 158–166.

DOI: https://doi.org/10.1016/j.jcat.2009.08.005

[13] F.C. Moraes, M.F. Cabral, L.H. Mascaro, S.A.S. Machado, The electrochemical effect of acid functionalization of carbon nanotubes to be used in sensors development, Surf. Sci. 605 (2011) 435-440.

DOI: https://doi.org/10.1016/j.susc.2010.11.014

[14] D. Zheng, J. Ye, L. Zhou, Y. Zhang, C. Yu, Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film, J. Electroanal. Chem. 625 (2009) 82–87.

DOI: https://doi.org/10.1016/j.jelechem.2008.10.012