Tensile, Flexural and Compressive Strength Studies on Calcium Oxalate Monohydrate Urinary Stone


Article Preview

Calcium oxalate monohydrate (COM) is the primary constituent of the majority of stones formed in the urinary tract. Mechanical properties of renal calculi dictate how a stone interact and disintegrate with mechanical forces produced by shock wave and laser lithotripsy techniques. Tensile stresses may be more effective in some instances in disrupting material because most materials are weaker in tension than compression. Urinary stone containing COM as a major component was subjected to tensile, flexural and compressive strength studies in order to understand its mechanical properties in vitro. The calculated tensile breaking strength for the urinary stone from three tests varies from 0.57 MNm-2 to 1.52 MNm-2. The flexural strength and the flexural modulus of the urinary stone were calculated as 5.17 MNm-2 and 2.22 GNm-2 respectively while the observed compressive strength was 6.11 MNm-2. The chemical composition and the crystalline nature of the stone were verified using Fourier Transform Infrared spectroscopy and X-ray diffraction.



Edited by:

D. Rajan Babu




A. R. Mohamed Ali and N. Arunai Nambi Raj, "Tensile, Flexural and Compressive Strength Studies on Calcium Oxalate Monohydrate Urinary Stone", Advanced Materials Research, Vol. 584, pp. 494-498, 2012

Online since:

October 2012




[1] James C. Williams Jr, Chad A. Zarse, Molly E. Jackson, Frank A. Witzmann, James A. McAteer. Variability of Protein Content in Calcium Oxalate Monohydrate Stones. J Endourol 20(8) (2006) 560–564.

DOI: https://doi.org/10.1089/end.2006.20.560

[2] Laurence Maurice-Estepa, Pierre Levillain, Bernard Lacour, Michel Daudon. Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta 298 (2000).

DOI: https://doi.org/10.1016/s0009-8981(00)00224-2

[3] James J. De Yoreo, S. Roger Qiu, John R. Hoyer. Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol 291 (2006) 1123–1132.

[4] M.G. McGeown, G.M. Bull, The pathogenesis of urinary calculus formation. Br Med Bull 13(1) (1957) 53-57.

[5] N.P. Cohen, H.N. Whitefield, Mechanical testing of urinary calculi. World J Urol 11 (1) (1993) 13–18.

[6] D. Heimbach, R. Munver, P. Zhong, J. Jacobs, A. Hesse, S.C. Muller, G.M. Preminger, Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones. J Urol 164 (2000) 537–544.

DOI: https://doi.org/10.1016/s0022-5347(05)67419-8

[7] C. Chaussy, E. Schmiedt, D. Jocham, W. Brendl, B. Forssmann, V. Walther. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol 127 (1982) 417-420.

DOI: https://doi.org/10.1097/00005392-200205000-00004

[8] V.A. Mezentsev. Extracorporeal shock wave lithotripsy in the treatment of renal pelvicalyceal stones in morbidly obese patients. Int Braz J Urol 31 (2005) 105-10.

DOI: https://doi.org/10.1590/s1677-55382005000200003

[9] A.J. Coleman, J.E. Saunders. A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy. Ultrasonics 31(2) (1993) 75-89.

DOI: https://doi.org/10.1016/0041-624x(93)90037-z

[10] Jan H. Rüffer, Ladislav Prikler, Daniel K. Ackermann. Factors of fragment retention after extracorporeal shockwave lithotripsy. Braz J Urol 28 (1) (2002) 3-9.

[11] P. Zhong, C.J. Chuong, G.M. Preminger . Characterization of fracture toughness of renal calculi using a microindentation technique. J Mater Sci Lett 12 (1993) 1460-1462.

DOI: https://doi.org/10.1007/bf00591608

[12] S.L. Zhu, F.H. Cocks, G.M. Preminger, P. Zhong. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28 (2002) 661-671.

DOI: https://doi.org/10.1016/s0301-5629(02)00506-9

[13] S.R. Visuri, A.J. Makarewicz, R.A. London, W.J. Benett, P. Krulevitch, L.B. Da Silva. U.S. Patent 6, 491, 685 B2 (2002).

[14] E.K. Girija, S.C. Latha, S. Narayana Kalkura, S.C. Subramanian, P. Ramasamy. Crystallization and microhardness of calcium oxalate monohydrate. Mater Chem Phys 52 (3) (1998) 253-257.

DOI: https://doi.org/10.1016/s0254-0584(97)02053-1

[15] Jian-Ming Ouyanga, Hui Zhenga, Sui-Ping Denga. Simultaneous formation of calcium oxalate (mono-, di-, and trihydrate) induced by potassium tartrate in gelatinous system J Cryst Growth 293 (2006) 118–23.

DOI: https://doi.org/10.1016/j.jcrysgro.2006.05.008

[16] A. Mohamed Ali, N. Arunai Nambi Raj, S. kalainathan, P. Palanichmy. Microhardness and acoustic behavior of calcium oxalate monohydrate urinary stone. Mater Lett 62 (15) (2008) 2351-2354.

DOI: https://doi.org/10.1016/j.matlet.2007.11.093

[17] M. Tonkovic, M. Sikiric, V. Babic Ivancic. Controversy about β-tricalcium phosphate Colloids and Surfaces A: Physicochem Eng Aspects 170 (2000) 107-112.

DOI: https://doi.org/10.1016/s0927-7757(00)00476-3

[18] Jeremy L. Gilbert, Diane S. Ney, Eugene P. Lautenschlager. Self-reinforced composite poly(methy1 methacrylate): static and fatigue properties. Biomoterials 16 (1995) 1043-1055.

DOI: https://doi.org/10.1016/0142-9612(95)98900-y

[19] Shyh-Jen Wang, Ming-Chuen Yip, Yen-Shen Hsu, Kun-Guo Lai, Shyh-Yau Wang. The Modulus of Toughness of Urinary Calculi. J Biomech Eng 124 (2002) 133-134.

DOI: https://doi.org/10.1115/1.1431264