FT-IR Spectroscopy and SEM-EDX Studies on Nano Copper Doped Conducting Polymer

Abstract:

Article Preview

Polypyrrole (PPy) based metal composites have obtained considerable attention due to its fascinating properties such as appreciable electronic conductivity. This study is based on the system, pure polypyrrole (PPy) and nano copper doped polypyrrole (n-CuPPy) which were prepared by chemical oxidative polymerization method. The properties of PPy and n-CuPPy have been investigated by FT-IR,SEM-EDX and conductivity measurements. The FT-IR spectra showed the presence of all characteristics absorption peaks of PPy that is 881cm-1(=C-H out of plane vibration),1043cm-1(=C-H in plane vibration), 1182cm-1 (N-C strech vibration ) and 1552cm-1 (pyrrole ring vibration). The morphological structures and semi quantification of elements present in the pure and nano copper doped composite have been analysed using Scanning Electron Microscope with Energy Dispersive X-ray Spectroscopy. The conductivity measurements have been measured using two probe technique. We compare the conductivities of pure PPy with nanocomposite. The conductivity of n-CuPPy is 2x10-3 S/cm and PPy is 2.5x10-5 S/cm. The conductivity of n-CuPPy have been increased by two order when compared with PPy. The increase in conductivity in composite materials than PPy is due to the incorporation of nano copper particles into the PPy matrix.

Info:

Periodical:

Edited by:

D. Rajan Babu

Pages:

541-545

Citation:

C. Shanmugapriya and G. Velraj, "FT-IR Spectroscopy and SEM-EDX Studies on Nano Copper Doped Conducting Polymer", Advanced Materials Research, Vol. 584, pp. 541-545, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] H.K. Youssouti, F. Garnier, P. Srivastava, P. Godillot, A. Yassar, Toward Bioelectronics:  Specific DNA Recognition Based on an Oligonucleotide-Functionalized Polypyrrole, J. Am. Chem. Soc. 119 (1997) 7388-89.

DOI: https://doi.org/10.1021/ja964261d

[2] T.A. Skotheim, R. Elsenbaumer, J. Reynolds, Hand book of conducting polymers, second ed. Marcel Dekker , New York, (1998).

[3] G.G. Wallace, G. Spinks, P.R. Teasdal, Conductive Electroactive polymers. second ed., Intelligent Materials Systems, New York, (2003).

[4] G.P. Gardini, The Oxidation of Monocyclic Pyrroles, Adv. Heterocycl. chem. 15(1973) 67-98.

[5] S. L. Hung, T. C. Wen, A. Gopalan, Application of Statistical design strategies to optimize the conductivity of electro synthesized polypyrrole, Mater let. 55( 2002) 165-70.

[6] H.L. Wang, J.E. Fernandez, Conducting polymer blends: polypyrrole and poly (vinyl methyl ketone), Macromolecules. 25(1992) 6179-84.

DOI: https://doi.org/10.1021/ma00049a014

[7] A. Pron, W. Fabianowski, C. Budrowshi, J.B. Raynor, Z. Kucharski, J. Suwalski, S. Lefrant, G. Fatseas, Polypyrrole films grown on the surface of a polyvinyl-Ferric chloride complex, Synth. Met. 18(1987) 49-52.

DOI: https://doi.org/10.1016/0379-6779(87)90852-6

[8] M.E. Galvin, G.E. Wrnk, Characterization of polyacetylene/low density polyethylene composites prepared by in-situ polymerization, J. Polym. sci., Part A. polym. chem Ed. 21( 1983) 2727-37.

DOI: https://doi.org/10.1002/pol.1983.170210910

[9] J. Rodriquez, H.J. Grande, T. F otero, Handbook of organic conductive molecules and polymers, Wiely, New York, 1997, pp.453-460.

[10] C. Arribas, D. Rueda, Preparation of conductive polypyrrole-polystyrene sulfonate by chemical polymerization, Synth. Met., 79(1996) 23-26.

DOI: https://doi.org/10.1016/0379-6779(96)80125-1

[11] M.F. Rubner, S.K. Tripathy, Jr.,J. Georger, P. Cholewa, Structure-property relationships of polyacetylene/polybutadiene blends, Macromolecules. 16(1983 870-75.

DOI: https://doi.org/10.1021/ma00240a007

[12] A. Mohammadi, I. Lundstrom, O. Inganas, W.R. Salaneck, Conducting polymers prepared by template polymerization: Polypyrrole, Polymer. 31(1993) 395-99.

DOI: https://doi.org/10.1016/0032-3861(90)90375-9

[13] Chuan Qin, Alfredo T. N. Pires, Laurence A, Belfiore . Spectroscopic investigations of specific interactions in amorphous polymer-polymer blends: poly (vinylphenol) and poly (vinyl methyl ketone), Macromolecules. 24 (1991) 666–70.

DOI: https://doi.org/10.1021/ma00003a007

[14] S.A. Chen, W.G. Fang, Electrically conductive polyaniline-poly (vinyl alcohol) composite films: physical properties and morphological structures, Macromolecules. 24(1991) 1242-48.

DOI: https://doi.org/10.1021/ma00006a004

[15] Zhanhu Guo, Koo Shin, Amar B. Karki, David P. Young, Richard B. Kaner, H. Thomas Hahn, Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nano composites, J. Nanopart Res. 11( 2009)1441 –52.

DOI: https://doi.org/10.1007/s11051-008-9531-8

[16] H. J. Kharat, K. P. Kakade, P. A. Savale, K. Dutta, P. Ghosh and M. D. Shirsat, Synthesis of polypyrrole Films for the Development of Ammonia Sensor, Polym Adan Technol. 18( 2007) 397- 402.

DOI: https://doi.org/10.1002/pat.903

[17] B. Tian and G. Zerbi, Lattice-Dynamics and Vibrational spectra of polypyrrole, J Chem Phys. 92 (2009) 3886 –91.

[18] K. Arora, A. Chaubey, R. Singhal, R.P. Singh, M. K Pandey, S.B. Samanta., B.D. Malhotra and S. Chand, Application of Electrochemically Prepared polypyrrole – Poly vinyl Sulphonate Films to DNA, Biosensors. Biosens Bioelectron, 21(2006)1777 –83.

DOI: https://doi.org/10.1016/j.bios.2005.09.002

[19] C. GnanaSambandam, S. Perumal, Synthesis, Growth and Electrical characterization of L-tartaric acid – nicotinamide (LTN) single crystals, J Cryst Growth, 312(2010)1599 – 04.

DOI: https://doi.org/10.1016/j.jcrysgro.2010.02.004

[20] S-Perumal, C.K. Mahadevan, Growth and characterization of multifaced mixed crystals of KCl, KBr and KI – part 2: Electrical measurements, Physica B. 367( 2005)172 - 81.

DOI: https://doi.org/10.1016/j.physb.2005.06.013